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                                                     Abstract 

It has been demonstrated1 that the strength of zonal flows is dramatically larger in reactive fluid closures than in those which 

involve dissipation due to linear wave particle interactions.  This gives a direct connection between the fluid closure and the 

level of excitation of turbulence since zonal flows are needed to absorb the inverse cascade2 in quasi 2d turbulence.  This also 

explains the similarity in structure of the transport coefficients in our model, with an exact reactive closure in the energy 

equation, and models which have an exact reactive closure because of zero ion temperature2,3 .  As a consequence our model 

is completely self-consistent1,4-14 and no normalization against nonlinear gyrokinetics is needed. The difference between 

reactive and dissipative closures first became evident in the Cyclone tests10 of fluid models against nonlinear kinetic models.   

The fluid closure enters into the Reynolds stress because of  its temperature dependence1,5,6,7,11,12,14.  In this system we can 

hardly ever expand in the magnetic drift.  This was discussed in terms of a ‘New paradigm’ in Ref 12. We then get a full 

transport matrix where particle transport is driven by gradients in temperature as well as density. Thus the temperature 

dynamics is essential also for particle transport. An interesting aspect is also that resonance broadening has the double effect 

of removing Landau damping on particle pinches in standard quasilinear models and achieving the fluid closure. An 

important aspect is also the nonlinear correlation length8,14. 

A detailed discussion will be  given on the derivation of the fluid closure4, giving a an exact closure due to resonance broadening. 

Our exact reactive closure4 unifies several well known features of tokamak experiments such as the L-H transition5, internal 

transport barriers6 and the nonlinear Dimits upshift7,10 of the critical gradient for onset of transport.   The fact that kinetic 

ballooning modes and peeling modes dominate on the H-mode barrier is a choice by the code itself. It is also interesting to note that 

ITER simulations in H-mode, using this code and including the pedestal, give very similar performance to earlier simulations 

starting from the top of a pedestal of 4 Kev. This confirms the validity of our reactive fluid model. An overview of  consequences 

and achieved results will be given. 
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