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We propose a new measure of phase-randomizing 

degree of wave fields in turbulent plasma states. The idea 
is application of the concept of the von Neumann 
entropy to classical wave turbulence systems and it is a 
natural extension of the Gibbs entropy. For that purpose, 
a concept of a density matrix of classical wave fields is 
introduced together. We show validity of the classical 
von Neumann entropy to distinguish turbulent states and 
coherent state having broad spectrum quantitively [1]. 

In the field of wave turbulence, wave action, which 
represents the number of waves as a function of a 
quantum number such as frequency or wave number, has 
been a subject of investigation. For derivation of wave 
kinetic equation, which determines time evolution of the 
spectral distribution of wave action density, 
conventionally random-phase approximation (RPA) is 
employed for the closure of the hierarchy of the 
governing equations [2, 3]. From the kinetic equation, 
the H-theorem can be derived by defining the wave 
entropy Swave ≡ ∫ln(nk)dk, where nk and k are the wave 
action density and the wave vector, respectively [4]. 
Since the definition of the wave entropy is obviously 
based on RPA, Swave is inapplicable to wave phenomena 
which retain phase coherence. Moreover, physical 
interpretation of Swave is unclear. Therefore we propose a 
new idea representing wave field entropy, that doesn’t 
require RPA. Examples, to which our idea is fit, include 
supercontinuum, optical turbulence, rogue waves, drift 
wave turbulence and so on, that are recognized as wave 
turbulence. 

We examine an application of the von Neumann entropy 
to time series data sets to see its validity. Two data sets are 
prepared: One is white noise and the other is nonlinearly 
interacting three sinusoidal waves y3-wave expressed as 

 
𝜓𝟑#𝒘𝒂𝒗𝒆 = cos(𝜔.𝑡 + 𝜙.) + cos(𝜔3𝑡 + 𝜙3) +

cos(𝜔.𝑡 + 𝜙.) cos(𝜔3𝑡 + 𝜙3) + 𝑟𝑎𝑛𝑑.   
 

Here, wi and fi are the angular frequency and the initial phase 
of the i-th mode, respectively. The third term in the right hand 
side (rhs) represents the nonlinear coupling term between the 
1st and 2nd modes. In the rhs small noise expressed as rand is 
added. 

Figure 1 shows (a), (b) the power spectra, (c), (d) 
bicoherence ∣b∣2 and (e), (f) the amplitude of density matrices 
∣r∣ of the white noise and y3-wave, respectively. The 
bicoherence, ∣b∣2, is a measure of the fraction of the total 
product of powers of the frequency trios (w1, w2, w1±w2) that is 
caused by phase-coupled three modes, and it is given by 
|𝑏|3(𝜔.,𝜔3) = |𝐵(𝜔., 𝜔3)|3 , where B is the bispectrum 

defined as |𝐵(𝜔.,𝜔3)| =
=[?(@A)?(@B)?∗(@AD@B)]

FGA,B(@A,@B)G(@AD@B)
, and E is 

the expectation operator that averages over an ensemble of 
realizations, X is the Fourier transform of a realization of the 
time series data, and P is the power defined as 
𝑃.,3(𝜔., 𝜔3) = 𝐸[𝑋(𝜔.)𝑋(𝜔3)𝑋∗(𝜔.)𝑋∗(𝜔3)]. 
As the white noise has no correlation between any modes 
as shown by the |b|2 [Fig. 1 (c)], the amplitude of the 
density matrix ∣r∣ clearly shows diagonal components 
only, indicating that the state is highly mixed state. On 
the other hands, for y3-wave, the off-diagonal components 
of ∣r∣ are not smeared out [Fig. 1 (f)]. The respective 
SNeumann are 3.70 for the white noise and 0.09 for y3-wave. 
The maximum SNeumann in this analysis is ln(Nmode) = 
ln(1000) ≒ 6.91. 
 

 
Fig.1. (a), (b) the power spectra, (c), (d) bicoherence ∣b∣2 
and (e), (f) the amplitude of density matrices ∣r∣ of the 
white noise and y3-wave, respectively. 
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