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There exists a variety of dynamics that are well de-
scribed as Hamiltonian systems. An ideal fluid dynam-
ics, including magnetohydrodynamics (MHD), is one of
the Hamiltonian systems. For the description of such
fluid dynamics, we often adopt noncanonical variables
[1]. Then the corresponding Poisson bracket can have
kernels, called Casimirs, that foliate the phase space. A
set of phase points that have same values of the Casimirs
is a Casimir leaf. Therefore, the system evolves along a
contour of the Hamiltonian on the Casimir leaf.

Let us write the evolution equation of a vector of
phase space variables u as Ou/0t = J(6F[u]/du),
where J expresses the Poisson bracket, F'[u] := H[u] +
>; Ci[u] is the energy-Casimir functional with H [u]
the Hamiltonian functional and C; the Casimirs, and
dF[u]/éu is the functional derivative of F'[u]. A sta-
tionary state is given by d F'[u]/du = 0, which is an ex-
tremum or a stationary point of the Hamiltonian on the
Casimir leaf [2, 3].

Utilizing this fact, a method for calculating a station-
ary vortex states of two-dimensional fluids was devel-
oped, where an artificial advection changes the energy of
the system monotonically while preserves the Casimirs,
leading to a stationary state [4]. This idea was shown to
be applicable to any Hamiltonian systems [5], and var-
ious numerical examples were shown together with dis-
cussions on the stability of the stationary states [6]. The
artificial advection method was further extended to im-
pose additional constraints using the Dirac bracket, and
for example to effect smoothing by introducing a metric
operator in their symmetric bracket [7]. The extended
method is named simulated annealing (SA). A variety of
numerical examples were also presented [7].

We have been extending the application of the SA to
MHD equilibrium calculations. We have first succeeded
to obtain equilibria of the low-beta reduced MHD in a
doubly-periodic rectangular domain [8]. Since the SA
dynamics is restricted on a Casimir leaf, we may need
to put the initial condition on a desired Casimir leaf.
Therefore we have also developed a method to pre-adjust
the initial condition [9]. We have applied the SA also
for a cylindrical plasma, and have obtained equilibria
with magnetic islands [10]. Moreover, we have obtained
toroidal axisymmetric equilibria, large-aspect-ratio and
circular cross-section tokamaks and toroidally-averaged
stellarators [11], by using high-beta reduced MHD.

If we construct the SA so that the energy decreases
monotonically, an obtained equilibrium has a minimum
energy. However, as mentioned above, an equilibrium
can generally have maximum, minimum or stationary
energy on the Casimir leaf. Therefore the SA cannot
achieve all types of equilibria by the present construction.
Especially, the SA cannot obtain the stationary (saddle)

energy equilibrium by either decreasing or increasing en-
ergy of the system. We may need to impose additional
constraints that restrict the artificial dynamics of the SA
on a specific “curve” on the original Casimir leaf. In or-
der to understand the stability nature of equilibria and to
develop a method to impose the additional constraints,
we have examined dynamics of a heavy top.

A heavy top has a six-dimensional phase space and
two Casimir invariants by using noncanonical variables.
We have obtained reasonable understanding in compar-
isons among linear stability of stationary states, eigenval-
ues of the Hessian matrix of the energy-Casimir function,
mode energy including negative one, as well as linear sta-
bility of the SA dynamics. We have also constructed a
Dirac bracket that keeps one of the variables unchanged,
and succeeded to obtain a stationary state as an energy
minimum on the Casimir leaf with the additional con-
straint. The obtained state is not a stationary state origi-
nally. Therefore this method can be applicable to restrict
the SA dynamics on the original Casimir leaf. We have
formulated the Dirac bracket for the low-beta reduced
MHD by the same way as the heavy top.
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