
3rd Asia-Pacific Conference on Plasma Physics, 4-8,11.2019, Hefei, China  
Deep learning for tomographic reconstruction of imaging diagnostics 
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Imaging diagnostics play essential roles in the analysis 
of internal structures of plasmas where insertion of 
detectors is impossible for avoiding damages in plasmas 
and/or diagnostics. The conventional method of 
tomography invokes a simple model of internal structure so 
that the parameters of the model are easily evaluated by 
inverting the integrated observables. Limited accessibility 
of diagnostic or influence of nonlocal optical effects (such 
as backlights from chamber walls) can cause a lack of data, 
resulting in numerical instabilities in the inversion problem. 
To overcome such problems, a deep learning method, 
particularly convolutional neural networks (CNN) was 
applied in JET to reconstruct the 2D plasma profile with 
satisfactory accuracy [1]. They proved that their method is 
even faster than the classical tomographic methods that 
generally need higher computational demands. CNN learns 
to minimize a loss function that scores the quality of results. 
Although the learning process is automatic, a lot of manual 
processes are necessary for designing an effective loss 
function. In order to learn a loss function automatically, 
Generative Adversarial Networks (GAN) has been 
proposed [2]. GAN learns a loss by distinguishing whether 
output images are real or fake, while simultaneously 
training a generative model to minimize this loss. In this 
work, we build a method using “conditional GAN” (cGAN) 
[3] and apply it to obtain local emissivity from line-
integrated images [4]. 

We applied the reconstruction technique for the 
imaging diagnostic of He II 468.6 nm of Coherence 
Imaging Spectroscopy (CIS) [5] in RT-1, a laboratory 
magnetosphere created by a levitated superconducting ring 
magnet [6]. The pairs of local emissivity and line-
integrated images which simulate an experimental system 
are prepared to train a network. The local emissivity has 
been generated by the model functions typically used for 
the electron density and temperature profile of RT-1 which 
is given as a function of the magnetic flux surface [7]. The 
line-integrated images were generated using the local 
emissivity by assuming the toroidal symmetry of the RT-
1 plasmas. The reflection from chamber walls and levitation 
magnet (L-magnet) are considered in the images. In this 
calculation, we use the TensorFlow 1.13.1 implementation 
of cGAN named pix2pix [3]�Figure 1 shows the three sets 

of input, output and target image for the network.  
Once the network is trained, we applied it to the 

obtained images from the CIS in RT-1. In helium plasmas, 
the CIS measured the spectral intensity, the ion temperature, 
and flow velocity of He+. The ion cyclotron resonance 
frequency (ICRF) heating was successfully demonstrated in 
magnetospheric plasmas [8]. The input powers of 10 kW 
for the electron cyclotron heating (ECH) sustained the 
target plasma. Just after 0.1 sec from the start of the ECH 
injection, the ICRF heating of 9.4 kW was applied to the 
double loop antenna up to the termination of the discharge. 
The CIS was measured for the exposure time of 0.8 sec in 
the stable density period. Figure 2 shows the reconstructed 
images of local He+ intensity of these plasmas. The He+ 
intensity increases especially along the magnetic field lines 
near the levitation magnet. This result corresponds that the 
heated He+ ions around the double loop antenna in the high 
field side near the center stack move to the upper region of 
levitation magnet along the magnetic field lines. 

The calculation of line-integrated image from local 
emissivity of emission is generally easier than the 
calculation of the opposite relation. In the present practice, 
we have taken into account the backlight reflected from the 
chamber walls, which makes even the line-integrals 
involved; hence the conventional inversion methods do not 
apply. This method can be applied to other diagnostics in 
other machines where reconstruction is difficult because of 
restrictions on measurements or complexities of the 
inversion problem. 
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Fig. 2.  Line-integrated emission intensity of CIS (left) and 
reconstructed local intensity profile (right) with ICRF. 
The ion cyclotron layers for He2+ and He+ are depicted. 

Fig. 1.  Sample reconstructions produced by the network, with the 
line-integrated image (Input, left), reconstructed local 
emissivity (Output, middle), and target image (Ground 
truth, right). 
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