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Energetic Au ions and high yield X-ray/gamma-ray generation from
near-critical-density targets irradiated by multi-peta-watt lasers
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Ultra-short laser-driven ion acceleration would be a
compact and cost-efficient alternative to provide ion
beams with unique properties (i.e. high density and
ultra-short duration) that conventional accelerators can
not offer, which is extremely attractive to applications to
nuclear astrophysics, cancer therapy, and
high-energy-density physics. In the past two decades, the
acceleration of protons, low-Z ions, and mid-Z ions has
been extensively explored. However, only a few
experimental results of super heavy ions (SHIs) were
reported because SHIs are hard to be ionized to very high
charge states and efficiently accelerated.
Recently, multi-PW laser facilities, for example, GIST

(4.2 PW) and ELI (10 PW), have been constructed or
under construction. These facilities, capable of
generating ultra-short laser pulses with focused peak
intensity exceeding 1022 W/cm2[1], have opened the
avenues to new areas for investigating laser-driven SHI
acceleration. Our recent experiments in GIST
demonstrate the generation of deeply-ionized Au ions
with unprecedented energy of 1.2 GeV and charge state
up to 61+ by femtosecond laser pulses at the intensity of
1022 W/cm2. The combination of ultra-high intensity
laser and near-critical-density (NCD) double-layer
targets can overcome the difficulties of ionization and
acceleration of SHIs. Besides, we realized a novel
self-calibrated detection based on single-ion events, to
obtain the absolute charge state distribution of Au ions,
which can be used as a tool to understand the details of
ionization and acceleration. Particle-in-cell simulations
reveal that the laser intensity plays a crucial role in the
generation of highly energetic Au ions. The employed
double-layer targets, which have been successfully used
for the acceleration of 58 MeV/u carbon ions[2], results
in the 1.5 times enhancement of the Au energy as
compared to 150-nm single-layer Au foils. The measured

charge state distribution and the simulations confirm
such an enhancement is due to the prolonged
acceleration time in the double-layer targets.
High-energy photons have enormous applications in

fundamental research and industry. Some applications
such as ultrafast radiography require ultra-short
(femtoseconds), brilliant gamma-rays with a small
source size (micrometers), which have been successfully
achieved over the past two decades by irradiating intense
laser pulses on low-density targets such as gas jets and
discharged capillaries. Further improving the densities of
targets to near-critical density (1e21 /cm^3) can achieve
a highly efficient laser absorption and a strong
self-induced magnetic field, resulting in a compact
gamma-ray source with higher yield and photon energy.

Recently, we realized the experimental generation of
high-yield X-ray/gamma-ray photons from petawatt laser
irradiating NCD foils. Utilizing free-standing carbon
nanotube foam as thickness-controlled and homogeneous
plasmas with an electron density of 1.7e21 /cm^3, we
successfully measured the hard X-ray emission when a
high-density electron bunch is violently driven by its
self-induced magnetic field. By appending a
diamond-like carbon foil behind the carbon nanotube
foam as the plasma mirror to reflect the driving laser, In
order to furthermore improve the photon energy, the
generation of high-yield gamma-rays was generated
through nonlinear Thomson backscattering. The obtained
experimental results well agree with the results in our
previous simulation study[3].
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