

^{4th} Asia-Pacific Conference on Plasma Physics, 26-31Oct, 2020, Remote e-conference **Power balance analysis of JET-ILW L-H transition in Deuterium plasmas** <u>P. Vincenzi¹</u>, E. R. Solano², E. Delabie³, C. Bourdelle⁴, J. Citrin⁵, G. Snoep⁵, A. Baciero², P. Carvalho⁶, M. Chernyshova⁷, J.C. Hillesheim⁸, A. Huber⁹, S. Menmuir⁸, F. I. Parra¹⁰ and JET contributors*

¹ Consorzio RFX, ² Laboratorio Nacional de Fusión, CIEMAT, ³ Oak Ridge National Laboratory, ⁴ CEA, IRFM, ⁵ DIFFER—Dutch Institute for Fundamental Energy Research, ⁶ Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, ⁷ Institute of Plasma Physics and Laser Microfusion, ⁸ CCFE, Culham Science Centre, ⁹ Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung-Plasmaphysik, ¹⁰ Rudolf Peierls Centre for Theoretical Physics, University of Oxford, ^{*} See the author list of E. Joffrin et al 2019 Nucl. Fusion 59 112021 e-mail (speaker): pietro.vincenzi@igi.cnr.it

The understanding of the physics governing the transition from low (L) to high (H) -mode confinement and of the existence of a plasma density, ne.min, at which the power to access H-mode is minimum, has strong implications for ITER operation and DEMO design. Studies in the last decades on different tokamaks have sometimes shown a flattening or even a minimum of the L-H power (P_{LH}) threshold as a function of density. On JET C-wall, the roll-over of the power threshold at low density was not observed in all divertor geometries, it reappeared only with the installation of the JET-ILW (ITER-like wall) [1]. In JET, both the power threshold and the value of n_{e,min} (when observed) depend on toroidal field and plasma shape. Results from ASDEX-Upgrade (AUG) and Alcator C-mod (C-mod) experiments suggested that the variation of the ion heat flux with density, dominated by equipartition in electron heated plasmas, can explain the non-monotonic density dependence of the L–H threshold power [2], [3].

Based on data from dedicated L-H transition experiments in JET-ILW with Deuterium plasmas heated by Neutral (NBI), interpretative Beam Injection numerical simulations have been run with JINTRAC suite of codes [4] to carry out a power balance analysis, estimating in particular the power coupled to ions at the L-H transition. The NBI power deposition is estimated with ASCOT Monte Carlo code [5]. For pulses where core ion temperature (T_i) measurements were not available, the gyrokinetic transport quasilinear model QuaLiKiz-JETTO [6] is used to predict core T_i. Since the position of the divertor strike points strongly influences P_{LH}, each plasma shape has been considered as a separate dataset. For the JET discharges analyzed (Btor=3 T, Ip= 2.5 MA), ion heating is dominated by direct NBI heating, and the electron-ion equipartition power term is generally lower in magnitude than NBI power to ions. This result is exemplified in fig. 1, referring to 3 discharges, at different average densities, of high-triangularity "Horizontal Target" (HT) plasmas, having the outer strike point located in a tilted, almost horizontal, divertor tile. Similar results are found for the other sets analyzed, namely a low-triangularity HT dataset, and a "Vertical Target" dataset, with plasmas having both inner and outer strike points on vertical target tiles. For these L-H transitions in JET, the

existence of a minimum ion heat flux, at given plasma density, seems to be in agreement with results from NBI-heated AUG discharges, while it appears different from radio-frequency heated plasmas, where such a minimum was not observed. Similarities and differences with other devices are discussed, in particular with respect to AUG and C-mod results. Modelling of the L-mode edge prior to the transition is also presented, focusing on the micro-turbulence analysis performed at various densities with the gyrokinetic code GENE [7].

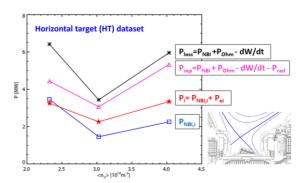


Fig. 1: Power balance terms for high-triangularity JET D-plasmas at different volume-averaged densities in the divertor configuration named "Horizontal Target" (shown in the right-bottom corner).

Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

References

- [1] Maggi C. et al. 2014 Nucl. Fusion 54 023007
- [2] F. Ryter et al. 2014 Nucl. Fusion 54 083003
- [3] M. Schmidtmayr et al. 2018 Nucl. Fusion 58 056003
- [4] Romanelli M. et al. 2014 Plasma Fusion Res. 9 3403023
- [5] Hirvijoki E. et al. 2014 Comp. Phys. Comm. 185 1310–132
- [6] Bourdelle C. et al. 2007 Phys. Plasmas 14112501
- [7] Jenko F. et al. 2000 Phys. Plasmas 7 1904