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Inductively coupled plasma (ICP) has been widely 
used in etching process and film deposition, and it has 
two different operation modes of the capacitive (E-) 
mode and the inductive (H-) mode. Compared with the 
E-mode operation, the H-mode discharge has advantage 
in low ion bombardment damage and independently 
controllable ion energy. Using the Faraday shield can 
efficiently reduce the E-mode influence, but in the 
meanwhile, it will bring the difficulty for discharge and 
reduce the inductive coupling efficiency. Therefore, in 
order to better understand and optimize the power 
coupling state and mode transition node, the study for the 
influence in the E to H power transfer efficiency and the 
transition threshold power of ICP is significant. 

The schematic diagram of the experimental setup is 
shown in Fig. 1(a), the discharge chamber is a planar 
type ICP cylindrical reactor with two-turn water-cooled 
copper coils1. The experiment is carried out under Ar/O2 
discharge, the pressure changes from 0.3 Pa to 11 Pa, 
operating at a 13.56 MHz RF power and varies from 10 
to 300 W, and the matching network is fixed. Both the 
electron density (ne) and the power transfer efficiency (η) 
are measured during the E to H mode transition by a 
Langmuir probe and a current monitor. At the ultimate 
pressure, i.e. 7 × 10−4 Pa, the equivalent resistance has 
been calculated and shown in Fig. 1(b). Using the 
equivalent resistance (R = 0.2092 Ω) and the coil current 
(I), the power transfer efficiency can be obtained. 
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Fig. 1, the schematic diagram of the experimental setup 
(a) and the measured equivalent resistance (b). 
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Fig. 2, the η against the applied power during the E to H 
mode transition at the pressure from (a) 0.3 to 2 Pa and 
(b) 2 to 9 Pa for Ar/O2 discharge and the O2 content is 
40%, respectively. 

Fig. 2 shows power transfer efficiency against the 
applied power during the E to H mode transition in Ar/O2 
discharge at different pressures. It can be seen that, with 
the pressure increasing, the power transfer efficiency 
shows a nonmonotonicity trend for first increases and 

then decreases. The evolution of η has a close 
relationship with the electron density and the effective 
collision frequency2. Indeed, the ne also shows a 
nonmonotonicity trend and the result is shown in Fig. 3.  
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Fig. 3, The electron density against the absorbed power 
at the pressure from (a) 0.3 to 2 Pa and (b) 2 to 9 Pa for 
Ar/O2 discharge and the O2 content is 40%, respectively. 

Using power transfer efficiency, the E to H mode 
transition threshold power (Pth) is calculated in the form 
of absorbed power. As can be seen in Fig. 4, for all the 
O2 content, the Pth presents a trend for first decrease then 
increase with the pressure raising, which is caused by the 
various for the radio of the effective electron collision 
frequency to the power frequency3,4. The H mode critical 
power also presents a nonmonotonicity trend against 
pressure, the reason for it needs further studies in future. 
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Fig. 4, the transition threshold power in absorbed power 
against the pressure for Ar/O2 discharge in different O2 
content at (a) 20%, (b) 40%, (c) 60% and (d) 80%, 
respectively. 
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