

6th Asia-Pacific Conference on Plasma Physics, 9-14 Oct, 2022, Remote e-conference

Electron Acceleration by Moderate-Mach-number Low-β Shocks

Chunkai Yu¹, Zhongwei Yang², et al

¹Department of Plasma Physics and Fusion Engineering, University of Science and Technology of

China

²State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of

Sciences

e-mail (speaker): ckyu@mail.ustc.edu.cn

Particle acceleration is ubiquitous at shock waves, occurring on scales ranging from supernova remnants in the universe to coronal-mass-ejection-driven shocks and planetary bow shocks in the heliosphere. The most promising mechanism responsible for the almost universally observed power-law spectra is diffusive shock acceleration (DSA). However, how electrons are pre-accelerated by different shocks to the energy required by the DSA theory is still unclear.

In our work, we perform two-dimensional particlein-cell plasma simulations to investigate how the magnetic field orientations, with respect to simulation planes, affect electron pre-acceleration in moderate-Mach number low- β shocks. Simulation results show that instabilities can be different as the simulation planes capture different trajectories of particles. For magnetic fields perpendicular to the simulation plane, electron cyclotron drift instability [1] dominates in the foot. Electrons can be trapped by the electrostatic wave and

Figure 1: The electron's trajectory and its position with respect to the shock (out of plane)(a)–(c): Ex(t = 3.6), Bz(t = 4.6), and Ex(t = 5.0). The start time is indicated by the red dot, whereas the blue dot denotes the end time. The start and end times of each subplot: (a) t = 3.3–3.9, (b)t = 4.4–4.73, and (c) t = 4.74–5.1.

undergo shock-surfing acceleration (Figure 1).

For magnetic fields lying in the simulation plane, whistler waves produced by modified two-stream instability [2, 3] dominate in the foot and scatter the electrons. In both cases, electrons undergo multistage acceleration in the foot, shock surface, and immediate downstream, during which process shock-surfing acceleration takes place as part of the pre-acceleration mechanism in moderate-Mach-number quasiperpendicular shocks (Figure 2).

This work is supported by the Strategic Priority Research Program of Chinese Academy of Sciences.

References

Yang, Z., et al., ApJL, 900, L24(2020b)
Matsukiyo, S., Scholer, M. JGRA, 108, 1459(2003)
Scholer, M., Burgess, D., PhPl, 14, 072103(2007)

Figure 2: The electron's trajectory and its position with respect to the shock (in plane): electric field Ex (t = 3.6), electric field Ez (t = 4.2), and electric field Ex (t = 4.5). The start and end times of each subplot: (a) t = 3.1-3.8, (b)t = 4-4.4, and (c) t = 4.4-4.6. The arrows in (b)indicate vector (Ex, Ey).