

Phase space transport in the interaction between shocks and plasma turbulence

S. Servidio¹, D. Trotta² and F. Valentini¹ ¹ Dipartimento di Fisica, Università della Calabria, Italy¹ ² The Blackett Laboratory, Imperial College London, London e-mail (speaker):sergio.servidio@fis.unical.it

The interaction between collisionless shocks and plasma turbulence is a key ingredient for the understanding of many astrophysical phenomena [1, 2]. Such an interaction has been of growing interest in recent literature, involving theoretical [3], numerical [4, 5], and observational [6] efforts.

Shocks and turbulence are therefore spectacular, ubiquitous phenomena. We investigate, by kinetic simulations, the interaction between a supercritical shock and fully developed plasma turbulence [7]. In Figure 1 we show hoe the turbulence level influences the dynamics and the topology of the shock.

We demonstrate how turbulence changes the phase space transport due to a complex interaction. Two main findings are presented: 1) a paradigm for modeling the shocks, including a natural interaction with surrounding turbulence, and 2) an analysis method, based on coarsegrained Vlasov-kinetic equations, able to characterize (and simplify) the transport processes.

These results are relevant for a variety of systems, ranging from the Earth's bow shock interacting with solar wind turbulence [8] to supernovae explosions propagating through the interstellar turbulent medium.

References

[1] A. M. Bykov *et al*, Space Sci. Rev. **215**, 14 (2019)
[2] F. Guo et al, Frontiers in Astronomy and Space
Sciences **8**, 27 (2021)

- [3] G. P. Zank et al, Phys. Fluids 14, 3766 (2002)
- [4] Y. Matsumoto et al, Schience 347, 6225 (2015)
- [5] J. Giacalone and J. R. Jokipii, JGR **101**, 11095 (1996)
- [6] S. Perri and G. Zimbardo, APJ 815, 75 (2015)
- [7] D. Trotta et al, PNAS 118, e2026764118 (2021)
- [8] D. Trotta et al, APJ, in press (2022)

Figure 1. (A) The 2D color maps of magnetic field magnitude B for the perturbed shocks and with different upstream turbulence strengths (A–C). (D) Upstream energy spectra collected in the regions highlighted by the magenta boxes.