

6th Asia-Pacific Conference on Plasma Physics, 9-14 Oct, 2022, Remote e-conference

Dust-charge fluctuation – a revisit

Madhurjya P Bora

Department of Physics, Gauhati Univetsity, Guwahati 781014, India e-mail (speaker): mpbora@gauhati.ac.in
As an AAPPS-DPP standard, we do not need to add your postal address.

Dust particles are almost ubiquitous in all kinds of plasmas - ranging from space and astrophysical plasmas to fusion-grade plasmas. With dusty plasma effects, comes the effect of dust-charge fluctuation, which is equally ubiquitous whenever there are dusty plasmas. Recent dusty plasma simulations^[1] have indeed demonstrated that dust-charge fluctuation is a very natural effect that accompany the dust-charging process. Earlier theoretical works^[2, 3] show how dust-charge fluctuation affects ion-acoustic and dust-acoustic plasma wave regimes, which is also demonstrated through simulations^[1]. This talk aims to take a slightly different look at this basic plasma phenomenon based on the possibility of driven dust-charge fluctuation. There were some earlier works in this regard^[4, 5] but the topic has largely been unexplored. This talk will be based on some recent theoretical and simulation work that we have been doing. Toward this, we have developed a PIC code with hybrid Monte Carlo collision scheme^[1,4] and also a Flux Corrected Transport (FCT)-based Navier-Stokes solver and we hope to present some recent results.

A similar problem is encountered when a charge accumulation travels across a plasma which can excite

nonlinear wave. A typical example of this problem can be found in low earth orbit (LEO) region where nonlinear waves are found to be excited by moving space debris^[6]. Although, physics-wise this is fundamentally similar to the driven dust-charge problem, the latter is self-excitation of charge accumulation (or deficiency) resulting out of dust-charge fluctuation driven externally. In this talk, we also try to draw a parallel between these two.

References

- [1] S. Changmai and Madhurjya P. Bora, Sci. Rep. 10, 20980 (2020).
- [2] M. R. Jana, A. Sen, and P. K. Kaw, Phys. Rev. E 48, 3930 (1993).
- [3] M. Momeni et al., J. Phys. A: Math. Theor. 40, F473 (2007).
- [4] Madhurjya P. Bora and Dipak Sarmah, arXiv:0708.0684v1 [nlin.CD] (2007).
- [5] S. Changmai and Madhurjya P. Bora, Phys. Plasmas 26, 042113 (2019).
- [6] Abhijit Senît, Sanat Tiwari, Sanjay Mishra, Predhiman Kaw, Adv. Space Res. 56 429 (2015)