6th Asia-Pacific Conference on Plasma Physics, 9-14 Oct, 2022, Remote e-conference

Lithium conditioning leads to a low collisionality edge and reduced recycling in LTX-beta

A. Maan¹, D.P. Boyle¹, G. Wilkie¹, M. Franscisquez¹, R. Majeski¹, R. Kaita¹, D.B. Elliott², S. Banerjee¹, W. Capecchi³, C. Hansen⁴, S. Kubota⁵, E. Perez⁶, F. Scotti⁷, V. Soukhanovskii⁷

¹Princeton Plasma Physics Laboratory, USA, ²Oak Ridge National Laboratory, USA ³University of Wisconsin, USA, ⁴University of Washington, ⁵University of California Los Angeles, USA,
⁶University of Illinois, Urbana-Champaign, USA, ⁷Lawrence Livermore National Laboratory, USA

e-mail (speaker): amaan@pppl.gov

We report the first observation of access to global recycling (R_W) near 0.5 from the plasma-facing components in the Lithium Tokamak eXperiment Beta (LTX- β), significantly below the minimum R_W ~ 0.85 reported in other devices using Li conditioning. We also observe that with increasing Li coating thickness, the effective particle confinement time τ_p^* is reduced while energy confinement τE (at fixed density) increases, with $\tau_{\rm E} \sim \tau_{\rm p}^{\,*}$ at the lowest recycling coefficients. Flat Te profiles with a hot edge, first reported in LTX, have been sustained for multiple $\tau_{\rm E}$ – another clear signature of access to the low recycling regime. LTX- β operates with near complete coverage of lithium on its all-metal PFCs. In a series of experiments with varied Li wall conditioning, estimates of the recycling coefficient have been made using a Lyman- α array and DEGAS2 modeling. We observe a progressive reduction in Lyman- α emission with increased lithiumization and an increase in edge T_e. The particle flux to the limiting surfaces appears to be significantly reduced in comparison to fluid SOL models, indicating that a large fraction of the SOL ions are mirror trapped. Collisionality drops more than an order of magnitude below the banana regime boundary, indicating the importance of kinetic effects. Full-f 1x2v gyrokinetic simulations of SOL field lines with the GKEYLL code indicate that the fraction of ions trapped along field lines increases as collisionality drops, as a result of increased lithium evaporation. Predictions of the impact of high trapped ion fraction from GKEYLL are being evaluated with available experimental data.

Note: Abstract should be in (full) double-columned one page.