Plans of p-¹¹B fusion study on an ENN spherical torus

Zhi LI^{1,2}, Bing LIU^{1,2}, Di LUO^{1,2}, Tiantian SUN^{1,2}, Yingying LI^{1,2}, Haozhe KONG^{1,2}, Guanchao ZHAO^{1,2}, Muzhi TAN^{1,2}, Xinbo ZHANG^{1,2}, Yueng-Kay Martin PENG^{1,2}, Huasheng XIE^{1,2}, Yuejiang SHI^{1,2}, Minsheng LIU^{1,2}

¹ Hebei Key Laboratory of Compact Fusion, Langfang 065001, China ² ENN Science and Technology Development Co., Ltd., Langfang 065001, China

Since 2018 ENN has been working towards p-¹¹B fusion on a spherical torus. The EHL-2 is a next-step design by the ENN Energy Research Institute to test p-¹¹B fusion reactions. Its technical goals are to reach electron densities up to $n_e = 1.3 \times 10^{20} \text{ m}^{-3}$, ion temperatures up to $T_i = 30 \text{ keV}$, $n_B = (0.05 - 0.1) \times n_i$, a plasma current of 3 MA and toroidal field of 3 T at a major radius of 1.05m. More than 10^{15} alpha particles per sec can be produced in such a plasma; their detection and characterization will shed first light on the properties of such plasmas. A combination of auxiliary heating and current drive power of 34 MW is assumed, including up to 20 MW hydrogen NBI at above 200 kV energy. Numerical simulation of beam-plasma target p-¹¹B reaction is in progress, in step with the orbit losses of the fusion produced energetic alpha particles, providing basis for energetic α particle detection designs. The p-¹¹B fusion cross sections are being updated with the latest beam-solid target experiments.

Key words: MCF; p-B; EHL-2; ST;