1st Announcement on 7th Asia-Pacific Conference on Plasma Physics
(AAPPS-DPP 2023) November 12-17, 2023
http://aappsdpp.org/DPP2023/index.html
Port Messe Nagoya, Japan
Organized by AAPPS-DPP
Issued on June 1, Rev2 June 12, 2023

The Division of Plasma Physics of the Association of Asia Pacific Physics Societies (AAPPS-DPP) has been successfully organizing annual conferences on plasma physics in the Asia Pacific region for the past 6 years. The 1st Asia-Pacific Conference on Plasma Physics (AAPPS-DPP2017) was held during September 18-23, 2017 in Chengdu, China (http://aappsdpp.org/DPP2017rogramlatest/index.html) followed by AAPPS-DPP2018 (http://aappsdpp.org/DPP2018/index.html) during November 12-17, 2018 in Kanazawa, Japan and AAPPS-DPP2019 (http://aappsdpp.org/DPP2019/index.html) during November 4-8, 2019 in Hefei, China.

The subsequent three conferences AAPPS-DPP2020 (http://aappsdpp.org/DPP2020/index.html), AAPPS-DPP2021 (http://aappsdpp.org/DPP2021/index.html) and AAPPS-DPP2022 (http://aappsdpp.org/DPP2022/index.html) were held as online conferences using the Zoom platform. We now plan to return to an in-person format this year to hold the 7th Asia-Pacific Conference on Plasma Physics (AAPPS-DPP2023) during Nov. 12-17, 2023 in Port Messe Nagoya, Japan.

[1] Scope of the AAPPS-DPP2023: AAPPS-DPP2023 is a plasma physics conference under the authority of AAPPS-DPP for scientific discussions on plasma physics. This conference should be physics oriented and provide interdisciplinary and in-depth discussions among and in various fields of plasma physics and application.

[2] Organization:
AAPPS-DPP (http://aappsdpp.org/AAPPSDPPF/) is organizing body of this conference. NIFS (DG: Z. Yoshida, https://www.nifs.ac.jp/en/about/director.html) co-organize this conference and act as LOC.

AAPPS-DPP chair &2023 IOC chair
Abhijit Sen
AAPPS-DPP CEO & 2023 General PC chair
Mitsuru Kikuchi
LOC chair
NIFS
Kenichi Nagaoka

Disclaimer
The attendance of AAPPS-DPP2023 conference is at own risk. While the organizers will make every effort to conduct this conference according to the announced schedule, unlikely, unforeseen circumstances may result in change of the schedule or cancelation of the conference. These changes will be posted at the conference website. No liability is assumed for inaccuracy, misdescription, delay, damage, and loss.

[3] Date: November 12(Sunday) -17(Friday), 2023

[4] Sponsors
AAPPS-DPP2023 is financially supported by:
1. International Center for Theoretical Physics (ICTP, https://www.ictp.it)
2. Asia Pacific Center for Theoretical Physics (APCTP, https://www.apctp.org/main/)
3. Larsen & Toubro Ltd (Sponsor for 2023 S. Chandrasekhar Prize) https://www.larsentoubro.com
4. INOX CVA (Sponsor for 2023 Plasma Innovation Prize) https://inoxcva.com
6. IFE Forum (Sponsor for 2023 U30 Award) https://www.ilt.or.jp/ife-forum/
7. YUKWAI (Partial sponsor for 2023 Young Researcher Award) https://yu-kaai.jp/
8. Hamamatsu photonics KK (Sponsor, program advertise) https://www.hamamatsu.com/ip/ja/
9. EX-Fusion (Exhibition, poster advertisement) https://www.ex-fusion.com/
10. Helical Fusion (Sponsor, poster advertisement) https://www.helicalfusion.com
11. Springer (Poster advertisement, Poster Prize gift books, exhibition), https://www.springer.com/jp
13. ENN Science and Technology Development Co., Ltd. (Program advertisement)

[5] Conference Venue:
Conference will be held in-person at Main Hall, Event Hall and Convention Hall in Port Messe Nagoya in Japan https://portmesse.com/en.

5.1 Plenary Talks
All plenary talks will be given at the Conference Hall in Main Hall building.

5.2 Parallel Sessions, Poster/Exhibition Sessions
There will be 9 parallel sessions in Main Hall, Event Hall, and Convention Hall.

1) Parallel session rooms in Main Hall

Room 3, 4 (108seats each), Room 5 (30seats)

Room 6, 1, 6-2, 7, 1, 7-2 (54seats each)
[6] Basic Structure of Scientific Program:

Conference will run from Sunday (12 Nov.) to Friday (17 Nov.). Sunday program is satellite WS, LHD tour and reception. From Monday, morning sessions will be plenary sessions (no parallel session) at the main conference hall. There will be 2023 S. Chandrasekhar Prize, Plasma Innovation Prize, Young researcher award, U30 award selection before the conference. Afternoon session will be dedicated for parallel sessions except Friday.

Conference covers following sub-disciplines of plasma physics.

3. “Organized Session” is Session proposals adopted by MF2 PC.

[7] Registration Fee and Conference Dinner Fee

Registration fee should be paid on-line before the conference. Conference registration site is open on June 1 at https://www.gakkai-web.net/p/aappsdpp_reg/new1.php

In case participant can’t come, paid fee will be reimbursed with some cost. At the conference site, there will be minimum peoples in charge. We will not accept payment in cash and ask on-line payment in case you have not paid on-line before so that you have to bring your valid credit card.

Member fee is applied to AAPPS-DPP members and participants join DPP (no membership fee). Registration fee includes 1) Admission to all conference sessions and 2) Conference Materials. Coffee break and welcome reception are free of charge.

Before Sept. 30, 2023

<table>
<thead>
<tr>
<th>Category</th>
<th>Member/Join DPP</th>
<th>Member(Retired)/Join DPP</th>
<th>Member(Student)/Join DPP</th>
<th>Non-member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration Fee</td>
<td>60,000 JPY (~450USD)</td>
<td>26,000 JPY (~200USD)</td>
<td>20,000 JPY (~150USD)</td>
<td>80,000 JPY (~600USD)</td>
</tr>
<tr>
<td>Dinner Fee</td>
<td>70,000 JPY (~500USD)</td>
<td>35,000 JPY (~250USD)</td>
<td>26,000 JPY (~200USD)</td>
<td>90,000 JPY (~650USD)</td>
</tr>
</tbody>
</table>

After Sept. 30, 2023

<table>
<thead>
<tr>
<th>Category</th>
<th>Member/Join DPP</th>
<th>Member(Retired)/Join DPP</th>
<th>Member(Student)/Join DPP</th>
<th>Non-member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration Fee</td>
<td>70,000 JPY (~500USD)</td>
<td>35,000 JPY (~250USD)</td>
<td>26,000 JPY (~200USD)</td>
<td>90,000 JPY (~650USD)</td>
</tr>
<tr>
<td>Dinner Fee</td>
<td>70,000 JPY (~500USD)</td>
<td>35,000 JPY (~250USD)</td>
<td>26,000 JPY (~200USD)</td>
<td>90,000 JPY (~650USD)</td>
</tr>
</tbody>
</table>
registration will be done at the service center A of 1st floor of Main Hall Building. On Sunday (Nov.12), registration desk at the service counter A is open during 13:00-15:00. Registration desk is open during 17:30-20:00 also at reception at welcome reception.

7.2 Conference dinner
1) Date and Time: Thursday, November 16th, from 19:45 to 22:00
2) Location: Hilton Nagoya, Ohgi-no-ma(扇の間), 5th Floor
3) Conference dinner fee: 8,000 JPY for a participant and 16,000JPY for a participant with spouse who paid during registration. Please bring banquet ticket in your conference bag to join the banquet.
4) Transportation: A chartered bus will be provided from Port Messe Nagoya to Hilton Nagoya, with a scheduled departure from the first floor of the Convention Hall at 18:30.

[8] VISA requirement
Participants who need VISA should contact DPP 2023 secretary(aappsdpp.2023@gmail.com). Registration fee should be paid in advance before you apply VISA. Please visit http://www.mofa.go.jp/j_info/visit/visa/ as well. Deadline for VISA registration is July 1. VISA support after July 1 will end on 1 September.
1. Register yourself at Registration homepage(https://www.gakkai-web.net/p/aappsdpp_reg/new1.php)
2. Click Visa “Required” and select Country to apply Visa.

[9] How to Reach Port Messe Nagoya
If you arrive at Chubu Centair International Airport, take Airport Express Train "μ-SKY" to Nagoya Station. https://portmesse.com/en/access-en
If you arrive at other Airport in Japan and no good connection to Chubu Centair International Airport, take Shinkansen to Nagoya station.
Access to Port Messe Nagoya from Nagoya Station: Take Aonami Line to reach Kinjyo-Futo Station. Port Messe Nagoya is 5 minutes by walk.
[10] Financial assistance: DPP will support limited number of presenters using the resource given by APCTP, ICTP. Application is closed on May 31. http://aappsdpp.org/DPP2023/html/2join/financial.html Notification of support will be made before June 10. Reimbursement will be made directly by the funding agency (APCTP, ICTP) for awarded participants after the conference and not on site.

Abstract submission is extended to June 15 at https://www.gakkai-web.net/gakkai/aappsdpp/ Abstract submission after June 15 is regarded as Post-deadline. All accepted post deadline submissions will be poster presentation. Submission site will be closed on August 10. We have “one-oral rule” so that plenary or invited or oral speakers can’t give another oral talk but can give additional poster presentation either same or different contents. All poster presentations can be candidates of poster prize.

[12] Box Lunch: Box Lunch of 1,200JPY can be reserved for Nov. 13-17 through registration homepage. Box Lunch (Yaohiko, 1,200JPY): contents changes every day (circulate 3 types).

Date: Sunday, November 12th, 2023

Time (Welcome Reception): 18:00-20:00, Registration Desk open during 17:30-20:00

The restaurant "Asahi Super Dry Nagoya" is located on the B1F floor of the Nitta Building. The registration desk will be opened at the entrance area of the restaurant. In the welcome reception, a standing buffet-style dinner and beverage service will be provided.

Food Menu

Juicy cold beef, Smoked salmon & tuna prosciutto carpaccio style, Assorted sandwiches, Shrimp with chili sauce, Sauteed pork tongue with salt and green onion flavor, Fried chicken thigh, Assorted sausages, Combination Pizza, Assorted fruits

※The menu is subject to change.

Access: 8 min. walk from Nagoya Station
[14] Hotel List near Nagoya station (within ~1km)

For reservation, please go directly to the hotel’s online reservation page or agent site. If you have any trouble of reserving your hotel, please contact LOC.

<table>
<thead>
<tr>
<th>Hotel Name</th>
<th>Website Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marriott Nagoya Associa</td>
<td>https://www.associa.com/nma/multi-lingual/?wovn=en</td>
</tr>
<tr>
<td>Nagoya JR Gate Tower hotel</td>
<td>https://www.associa.com/ngh/multi-lingual/?wovn=en</td>
</tr>
<tr>
<td>Campana Vessel hotel Nagoya</td>
<td>https://www.vessel-hotel.jp/campana/nagoya/</td>
</tr>
<tr>
<td>Comfort Hotel Nagoya Meiekimini</td>
<td>https://www.choicehotels.com/japan/nagoya-city/comfort-inn-hotels/jp103</td>
</tr>
<tr>
<td>Via Inn Nagoya Ekimae Tsubakicho</td>
<td>https://www.viainn.com/en/nagoya-t/</td>
</tr>
<tr>
<td>Sancoinn Nagoya Shinkansenguchi</td>
<td>https://www.sanco- inn.co.jp/nagoya/en/</td>
</tr>
<tr>
<td>Just Inn Premium Nagoya station</td>
<td>https://www.just-inn.jp/nagoyaeki/en/</td>
</tr>
<tr>
<td>Smile Hotel Nagoya Shinkansenguchi</td>
<td>https://smile-hotels.com/hotels/show/nagoyashinkansenguchi</td>
</tr>
<tr>
<td>Photo</td>
<td>Name</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>tbd</td>
<td>Cross-Disciplinary</td>
</tr>
<tr>
<td>tbd</td>
<td>Cross-Disciplinary</td>
</tr>
<tr>
<td></td>
<td>Cross-Disciplinary</td>
</tr>
<tr>
<td></td>
<td>Cross-Disciplinary</td>
</tr>
<tr>
<td></td>
<td>Fundamental plasma</td>
</tr>
<tr>
<td></td>
<td>Basic plasma</td>
</tr>
<tr>
<td></td>
<td>Applied plasma</td>
</tr>
<tr>
<td></td>
<td>Laser plasma</td>
</tr>
<tr>
<td>Topic</td>
<td>Author</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Laser plasma</td>
<td>Yutong Li</td>
</tr>
<tr>
<td>Laser plasma</td>
<td>Jerome Faure</td>
</tr>
<tr>
<td>Laser plasma</td>
<td>Chang Hee Nam</td>
</tr>
<tr>
<td>Space/Geomag plasma</td>
<td>Quanqi Shi</td>
</tr>
<tr>
<td>Space/Geomag plasma</td>
<td>Shuichi Matsukiyo</td>
</tr>
<tr>
<td>Space/Geomag plasma</td>
<td>Satyavir Singh</td>
</tr>
<tr>
<td>Space/Geomag plasma</td>
<td>Iver Cairns</td>
</tr>
<tr>
<td>Solar/Astro plasma</td>
<td>Shin Toriumi</td>
</tr>
<tr>
<td>Solar/Astro plasma</td>
<td>Huirong Yan</td>
</tr>
<tr>
<td>Solar/Astro plasma</td>
<td>Dongsu Ryu</td>
</tr>
<tr>
<td>Solar/Astro plasma</td>
<td>Feng Yuan</td>
</tr>
<tr>
<td>Magnetic Fusion</td>
<td>Bin Zhang</td>
</tr>
<tr>
<td>Magnetic Fusion</td>
<td>Akinobu Matsuyasma</td>
</tr>
<tr>
<td>Magnetic Fusion</td>
<td>Jeronimo Garcia</td>
</tr>
<tr>
<td>Magnetic Fusion</td>
<td>Filippo Scotti</td>
</tr>
<tr>
<td>MF Organized Session</td>
<td>Alexander Knieps</td>
</tr>
<tr>
<td>MF Organized Session</td>
<td>Gerardo Giruzz</td>
</tr>
<tr>
<td>MF Organized Session</td>
<td>Troy Carter</td>
</tr>
<tr>
<td>MF Organized Session</td>
<td>Dmitri Orlov</td>
</tr>
</tbody>
</table>
[16] Invited Speakers

Cross Disciplinary:

1. Surabhi Jaiswal Eastern Michigan University Investigation of auroral line in ambient air from O(1 S) metastable oxygen
2. Taik Soo Hahn Seoul National University Zonal flow generation in the presence of fast ions
3. Guojun Chi University of Technology On time evolution of self-generated vortex flows in a tokamak magnetic --
4. Yi Zhang Southwestern Institute of Physics Bifurcation of coherent vortex flow in a magnetic island through --
5. Johan Anderson Chalmers University of Technology Statistical analysis of turbulent plasma dynamics
6. Wengxin Tian Tsinghua University The Influence of Cross-Phase on Turbulent Transport of Toroidal --
7. Cong Meng Southwestern Institute of Physics Vorticity wave interaction and exceptional points in shear flow instabilities
8. Di Hu Beihang University Drift surface solver for runaway electron current dominant equilibria
9. Xiaobo Li Peking University A Dynamical Critical Gradient Model of ITB Formation and Evolution
10. Tong Liu Dalian University of Technology Enhancement of ECCD by current condensation effect for stabilizing --
11. Wei Xin Guo HUST Effects of alpha particles on plasma confinement and the removal of --
12. Choi Minjun Korea Institute of Fusion Energy Characterization of fluctuation and transport in KSTAR edge plasmas –
13. R. P. Prajapati Jawaharlal Nehru University Cosmic-ray-driven magnetohydrodynamic(MHD) waves and --
14. Patrick Diamond UC San Diego Formation and Resiliency of Staircase Profiles-Passive and Active Scalar -
15. Geert Verduoelaegh Ghent University An intrinsically probabilistic approach to analyzing stochasticity and --
16. Patrick Fuller University of Warwick Stochastic prey-predator theory and cycle L-H transition in fusion plasmas --
17. Eun-jin Kim Coventry University Effects of Stochastic Noises on Limit-Cycle Oscillations and Power --
18. Blouohan Parakdar University of Mumbai Improved proton acceleration by suppression of laser transparency –
19. Zhangsheng Huang HUST The effects of 3D MPs and finite beta on CTEM and ITG instabilities --
20. Sarvesh Sharma Institute for Plasma Research Flux and energy asymmetry in a low pressure capacitively coupled --
21. Lei Qi Korea Institute of Fusion Energy Role of isotopes in microturbulence from linear to saturated Ohmic --
22. Yohei Masada Fukuoka University Modeling Convection and Transport in the Sun
23. Min Jiang Southwestern Institute of Physics Interaction between magnetic island and turbulence and its impact in --
24. Satyananda Kar Indian Institute of Technology Optimization of a cold atmospheric pressure plasma jet for antimicrobial -
25. Qianghao Yan Southwestern Institute of Physics Saturation mechanism for energetic particle induced zonal structure
26. Shogo Isayama Kyushu University Relativistic particle acceleration in two-dimensional Alfvén wave --
27. Ting Long Southwestern Institute of Physics Turbulence spreading and flow shearing dynamics in high density --
28. Takumi Onchi Kyushu University Measuring permutation entropy and statistical complexity in plasma

Fundamental:

1. Liu Chen Zhejiang University On Nonlinear Scatterings between Drift Waves and Toroidal Alfvén --
3. Xingquan Wu ASIPP Drift-kinetic perturbed Lagrangian for low-frequency nonideal MHD --
4. Maria Elena Innocenti Ruhr-Universität Bochum Heat flux regulation by kinetic instabilities
5. Daniel Crews Zap Energy, Inc. On the validity of quasilinear theory applied to the bump-on-tail instability
6. Takeshi Matsumoto Kyoto University Linear response function of turbulence and its time scale
7. Ben Snow University of Exeter Shock identification and classification in MHD turbulence
9. Naoki Sato The University of Tokyo On the Grad conjecture in anisotropic MHD
10. Yohei Kawazura Tohoku University Hall magnetohydrodynamics in relativistically strong mean magnetic field
11. M. Akimoto Hirota Tohoku University Extended magnetohydrodynamic approach to plasma-vacuum interface
12. Keiichiro Nunokawa The University of Tokyo Clebsch representation and generalized enstrophy for relativistic plasma
13. Alain Brizard Saint Michael’s College Hamiltonian formulations of quasilinear theory for magnetized plasmas
14. Fabio Sattin Consorzio RFX Thresholdless stochastic particle heating by a single wave: --
15. Hongxuan Zhu Princeton Plasma Physics Lab Intrinsic toroidal rotation in tokamaks from global total-T gyrokinetic --
16. Tzearo Almadi University of Tokyo 2D MHD simulation of intermittent merging operation of spherical --
17. Joshua Barby Los Alamos National Laboratory Mean field theory for intense light-matter interactions in high energy --
18. Dimitrios Kaltsas Kaiserslautern International Hellenic University Construction of chaotic and integrable equilibria for a hybrid Vlasov --
19. Francesca Pugorar University of Pisa Kinetic closure with a charged disk model
20. Yasushi Ono University of Tokyo Merging of toroidal plasmas for high-power ion heating, plasma flow--
21. Kiori Obuse Okayama University Formation of zonal flow and Rossby wave nonlinear interactions in --
22. William Barham University of Texas at Austin On a self-consistent Hamiltonian model of the ponderomotive force and --
23. Young Dae Yoon Asia Pacific Center for Theoretical Physics Relaxation process of fundamental magnetized plasma structures.
25. PUNIT KUMAR University of Lucknow Turbulence and chaos in quantum plasma
26. Seiki Saito Yamagata university Emission process of high rovibrational molecules from tungsten divertor --
27. Hiroshi Tanabe University of Tokyo Asymmetric structure formation of guide field reconnection in merging --
28. Moe Akimoto QST Multiple Blob Formation in Current Sheet of Merging Tomakam Plasmas
29. Byungjun Kang National Institute for Fusion Science Gyrokinetic studies of electrostatic drift instability driven by fast ion --
30. Robert Dewar Australian National University Lagrange Multiplier Formulation of Ideal Magnetohydrodynamics (IMHD)
31. Sano Takayoshi Osaka University Richtmyer-Meshkov Instability in Magnetized Plasmas
32. Shunsuke Usami National Institute for Fusion Science Pseudo-Maxwellian and Ring Velocity Distributions in Magnetic Rec--
33. Haiyang Fu Fudan University Data-driven, multi-moment fluid modeling of Landau damping using --
34. Ding Li ASIPP Impact of magnetic field on the parallel resistivity
35. Camilla Bressan University degli Studi di Milano-Bicocca Use of Metriplectic Dynamics for Calculation of Equilibria
36. Jagannath Mahapatra Institute for Plasma Research Force-free magnetic island coalescence instability and Shear flow effects
Basic:

1. Taisei Motomura AIST Suppression of substrate temperature by balanced magnetron plasma --
2. Rozina Chaudhary Lahore College of Women University Signatures of quantum effects on the nonlinear Landau damping of --
3. Atsushi Okamoto Nagoya University Volumetric recombination of high density plasma in converging field --
4. Hong Yu Chu National Chung Cheng University A 10-cm long atmospheric pressure filamentary discharge produced in --
5. Yan Feng Soochow University Dynamical crossover from liquid to gas-like state in dusty plasmas
6. Aneesa Khan The University of Manchester Development of Tungsten Diamond Composites for Nuclear Fusion --
7. Chengxuan Yuan Harbin Institute of Technology The nonlinear dynamic behaviors in an undriven direct current glow --
8. Ya-feng He Hebei University Experimental observation of bi-dispersed microsphere separation in --
9. Harushira Nakano National Institute for Fusion Science Basic research on negative ion source for fusion using FA, RF and hybrid -
10. Nami Li Lawrence Livermore National Laboratory SOL Width Expansion driven by Fluctuation Energy Intensity Flux
11. Aohua Mao Harbin Institute of Technology Three-dimensional reconstruction studies for SPERF-AREX experiments
12. Shahrir Bintiwas AIST Investigation of Ionization Instability in a Linear Plasma Device
13. Rei Kawashima Shibaura Institute of Technology Numerical Analysis of the Gradient Drift Instability and its Control in --
14. Maryna Bilokur Australian National University High entropy alloys in advanced nuclear applications
15. Akio Sanpei Kyoto Institute of Technology Estimation of three-dimensional emissivity distribution with multi- --
16. Yuichi Kawachi Kyoto Institute of Technology Observation of spatiotemporal dynamics of high-wavenumber turbulence -
17. NANCHAXI PEKING UNIVERSITY Investigation of inward particle flux formation in the PKU Plasma --
18. Quixue Nie Harbin Institute of Technology Introduction to SESRI-SPERF, Fundamental Design and Research
19. Masaomi Tanaka Tohoku University Heavy element atomic data for multi-messenger observations of neutron --
20. Swarnima Singh Institute for Plasma Research Breaking the Hexagonal Lattice Barrier: Experimental Achievement of --
21. Ankit Dhaka Institute for Plasma Research Spontaneous Fluctuations of Densities in Strongly Coupled Complex --
22. Soumen De Karmakar Institute for Plasma Research Dynamical Phase Transitions in Active Complex Plasma
23. Koichi Kan Osaka University Ultrafast observation of the Lorentz contraction around a relativistic --
24. Yong Un Nam Korea Institute of Fusion Energy Interferometer Systems on KSTAR
25. ZHANG Ling ASIPP Recent Progress on high-Z impurity diagnostics development and --
26. Suruj Kalita Institute for Plasma Research 3D Molecular Dynamics Simulation of Dust Charge Dynamics in --
27. Supratik Banerjee IIT- Kanpur A new universal mechanism for the turbulent relaxation in incompressible-
28. Shoisuke Shinohara Princeton University Dynamic Plasma Contraction of the Weakly Ionized Non-Equilibrium --
29. Sedina Tskata Georgia Institute of Technology Insights into electron drift dynamics in low-temperature magnetized --
31. Jose Tito Mendonca University of Lisbon Photon Acceleration Revisited
32. Mayur Kakati Centre of Plasma Physics-IPR, Sonapur Studies on the retarded recrystallization of tungsten in the CPP-IPR --
33. Nanat Tiwari Indian Institute of Technology Jammu Kinetic modelling of Rayleigh-Taylor instability and turbulent mixing --
34. Ramesh Narayanan Indian Institute of Technology Delhi The effect of magnetic field configurations in ion beam generation using --
35. VUTARO NAKAJIMA Kyoto Institute of Technology Macroscopic deformation via gyro-motion in electrically non-neutral --
36. Naomichi Ezami University of Tsukuba Development of High Density and Large Diameter Plasma Sources in --

Applied:

1. Anne Mai-Prochnow University of Sydney The importance of cold plasma-generated short-lived reactive species, --
2. Suresh C. Sharma Delhi Technological University The influence of plasma parameters on device characteristics of --
3. Tomohiro Nozaki Tokyo Institute of Technology Elucidating plasma-surface interaction mechanism for CO2 conversion--
4. Kazunori Takahashi Tohoku University Magnetic nozzle rfs plasma thruster: performance improvement --
5. Luoyu Han Beijing Institute of Technology Single-step synthesis of advanced nanomaterials with adjustable --
6. Yangyang Fu Tsinghua University Microplasma interacting with complex surfaces
7. Weizong Wang Beihang University Particle modelling of a miniature neutralizer-free radio-frequency --
8. Yu Zheng Wuhan University Insulation characteristics of eco-friendly insulating gas with potential--
9. Wenjun Ning Sichuan University Atmospheric pressure plasma jet for surface treatment: a simulation --
10. Hao Zhang Xi’an Jiaotong University Plasma membrane reactor for pure hydrogen production from ammonia
11. Shiji KAMBARA Gifu University Preparation of BN/EP Composites with High Breakdown Strength --
12. Yan Mi Chongqing University Gliding arc plasma-assisted CO2 conversion: Unlocking the efficiency
13. Hao Zhang Zhejiang University Improving the carbon-matrix composites performance by self-assembly --
14. Wenfu Wei Southwest Jiaotong University Investigation of synergic response on low temperature plasma catalytic --
15. Xianxian Zhang Hubei University of Technology The degradation of high salt organic wastewater by the synergy --
16. Mohammad I Hasan University of Liverpool Development of large channel diameter plasma window using indirectly --
17. Zhengshi Chang Xi’an Jiaotong University Characteristics, parameters and application of typical non-thermal plasma
18. Li Guo Xi’an Jiaotong University Efficient inactivation of the contaminated microorganisms by --
19. Yuan Gao Institute of Electrical Engineering, CAS Spatio-Temporal Control of Thermofluid Field by Tandem Modulated --
20. De-Zheng Yang Dalian University of Technology Application prospect of Al-driven differentiable plasma modeling
21. Kataro Yamasaki Hiroshima University Spatio-Temporal Control of Thermofluid Field by Tandem Modulated --
22. Linlin Zhong Southeast University Applications of the “Energy Tree” Concept in Active Control of --
23. Yansunori Tanaka Kanazawa University Gas-liquid interfacial plasmas: Controlled generation of reactive species --
24. Li Lin George Washington University Non-equilibrium cold plasma technologies for health and agricultural --
25. Magdalena Jr Vasquez University of the Philippines Diliman Deposition of transparent conducting oxide thin films using pressed --
26. Ravi Prakash IIT - Jodhpur Multi-scale mapping between the control parameter space and a cold ---
27. Zheng Zhao Xi’an Jiaotong University Deposition of transparent conducting oxide thin films using pressed --
28. Li Lin George Washington University Non-equilibrium cold plasma technologies for health and agricultural --
29. Toshihiro Kaneko Tohoku University Streamer discharge instabilities under repetitive nanosecond pulses
30. Qiang Chen Xiamen University Gas-liquid interfacial plasmas: Controlled generation of reactive species --
31. Shaojun Xu Hefei University of Technology Synthesis of metal nanoparticles from DC discharge plasmas inside a ---
32. Boya Zhang Xi’an Jiaotong University Non thermal plasma with metal-organic frameworks (MOFs) for --
33. Deepak Prasad Subedi Kathmandu University Electron Swarm Parameters and Electron–Neural Collision Cross- ---
34. Nishita Nakayama Kyushu Institute of Technology Vacuum arc erosion behavior in hybrid DC interruption
35. Yifei Wu Xi’an Jiaotong University Fabrication of ZnO based transparent conducting oxides by sputtering --
36. Naho Itagaki Kyushu University Fabrication of ZnO based transparent conducting oxides by sputtering --
38. K. Jayasankar CSIR Large scale synthesis of zirconium carbide (ZrC) from zircon (ZrSiO4) --
39. Xue'ai Pei Wuhan University Warm air plasma jet for nitrogen fixation coupled with heterogeneous --
40. Shinichi Tashiro Osaka University Elucidation of arc coupling mechanism in plasma-MIG hybrid welding --
41. Anbang Wang Sun Xian Jiaotong University Advanced plasma model development and applications on streamer --
42. Pankaj Attri Kyushu University Catalase enzyme inhibition’s effects on plasma medicine
43. Zhuhui Zhuang Sun South China University of Technology Water-Promoted CO2 Hydrogenation to Ethanol over Cu2O Catalyst --
44. Qianhong Zhou IAPCM Theoretical study on the ion acceleration mechanism in vacuum arc
45. Quan-Zhi Zhang Dalian University of technology Simulations of magnetized rf discharge based on 1D/2D PIC models
46. Kai Zhao Dalian University of technology Effects of low-frequency voltage on nonlinear standing wave excitation --
47. Shinya Kumagai Meijo University Non-Thermal Atmospheric Pressure Plasma for Controlling Cell Fate
48. Xiaolong Huang Anode Jet in High Current Vacuum Arc
49. Thi-Thay-Nguyen Ngoc Nangaya University Wet-like plasma for the next generation of atomic layer etching
50. Zhenbing Luo National University of Defense Technology Experimental Study on Hypersonic Flow control by using Plasma --
51. Yang Cao AU Technion - Israel Institute of Technology Ionization-assisted self-compression of an ultra-intense, ultra-short --
52. Kunhiro Kamataki Kyushu University Development of Predictions of Optimal Plasma Processing Experimental -
53. Takamasa Nakamura Kyushu University Molecular transport analysis in irradiation of non-thermal equilibrium --
54. Pang Yang Chongqing University Discharge mechanism and mathematical physical model of AC air arc --
55. Y. Subramaniam Pondicherry University Submerged Thermal Plasma for Effective Degradation of Antibiotic --
56. Jungmi Hong The University of Sydney Green chemical pathway of N2 fixation: Perspectives from plasma --
57. Hom Baniya Tribhuvan University Generation and Characterization of Cold Atmospheric Pressure Plasma --
58. Rajdeep Singh Rawat Nanyang Technological University Low temperature plasma based anti-logging and anti-fingerprinting --
59. Uros Cvelbar Jozef Stefan Institute Design of advanced nanoplasmonic sensors
60. Yeqiang Deng Wuhan University Characteristics of corona discharge on blade tip and its impact on streamer
Solar/Astro:

1. Hechao Chen Yunnan University Detection of Flare-induced Plasma Flows in the Corona of a dMe star EV-- Extrapolating the solar magnetic field as a magnetohydrostatic equilibrium
2. Xiaoshuai Zhu National Space Science Center, CAS Coronal rain: plasma circulation in the solar corona
3. Xiaohong Li KU Leuven New details of interstellar medium revealed by the FAST Galactic Plane--
4. Ying Li Kansas University Peering into the Milky Way by FAST: Ionized gas in the Galactic disk--
5. Francesco Pecora University of Delaware Magnetic field amplification driven by relativistic shock--clump interaction
6. Stephane Mazevet Université Côte d’Azur Transition of latitudinal differential rotation as a possible cause of--
7. Michel Koenig Ecole Polytechnique Magnetized Radiative shocks: their role in global evolution of interstellar--
8. Daniela Grassi CNR Current and vorticity sheets disruption in collisionless plasma turbulence
9. Wenzhi Ruan KU Leuven MHD turbulence formation in solar flares: 3D simulation and synthetic--
10. Li Hongtao University of Michigan Meanders of stellar mass binary black holes in disks around supermassive--
11. Takato Tokuno The University of Tokyo Status and Latest Results from LHAASO--
12. Lingling Zhao University of Alabama in Huntsville Coupled Planetary and Ecosystem Modeling to Assess Habitability and--
13. Guoping Ruan Shandong University Single and Multispacecraft Observations of Solar Wind Turbulence--
14. Tushar Mondal ICTS-TIFR Why “solar tsunamis” rarely leave their imprints in the chromosphere
15. Sinming Lu Southwest Jiaotong University Dependence of the magnetic field and rotation on the explosion--
16. Peera Pongkitiwanchai Kasetsart University PIC Simulations of Perpendicular and Parallel Piston-Driven Shock--
17. Yuandeng Shen Yunnan Observatories, CAS Advances on the Study of Coronal Extreme Ultraviolet Waves
18. Wei Su Sun Yat-sen University The Impact of Solar – Terrestrial Plasmas and Magnetic Field on the--
19. Yuta Asahina University of Tsukuba Global Radiation Magnetohydrodynamic Simulations of Precessing Disk--
20. Jin Lin National Tsinghua University New details of interstellar medium revealed by the FAST Galactic Plane--
21. Li Gang Hou NAO, CAS Peering into the Milky Way by FAST: Ionized gas in the Galactic disk--
22. Jin Matsumoto Keio University Dependence of the magnetic field and rotation on the explosion--
23. Dong Li Purple Mountain Observatory, CAS Why “solar tsunamis” rarely leave their imprints in the chromosphere
24. Ruizheng Zhang Shandong University Evolution of edge transport and core accumulation of tungsten for--
25. Dong Li Purple Mountain Observatory, CAS Flare quasi-periodic pulsations detected in multiple wavelengths
26. Dong Li Purple Mountain Observatory, CAS Dynamics of RBS and RRE in three-dimensional numerical simulations
29. Kengo Tomida Tohoko University Cosmic rays in star and disk formation processes
30. Fan Guo Los Alamo National Laboratory Nonthermal Particle Acceleration in Magnetic Reconnection from--
31. Shi Fan KU Leuven Advanced flux-ropes CME models in EUHFORIA
32. Xuefeng Poots KU Leuven Stellar Prominences and the Mass-Loss of Cool Stars
33. Simon Daley-Yates University of St Andrews Advanced flux-ropes CME models in EUHFORIA

Magnetic Fusion-1(Core&Edge):

1. Mikhail Gryaznevich Tokamak Energy Ltd Spherical Tokamak path to Fusion – History and the Next Step
2. Hiroshi Gota TAE Technologies, Inc. TAE Technologies’ Fusion Program Overview
3. Rui Liu Cai USTC The interaction between energetic particles and tearing mode
4. Lining Yu Southwestern Institute of Physics Experimental Observation of Low-frequency MHD Instabilities Driven--
5. Wei Zhang ASIPP Experimental and numerical investigation of ICRF induced turbulence--
6. Ruirui Ma Southwestern Institute of Physics Theoretical studies of low-frequency Shear Alfvén waves in reversed--
7. Shuyu Dai Dalian University of Technology Evaluation of edge transport and core accumulation of tungsten for--
8. Guangzhou Hao Southwestern Institute of Physics Effect of global field perturbations on fast ion redistribution and losses in--
9. Shanghui Liu ASIPP Edge plasma transport in three-dimensional numerical simulations
10. Guanqi Dong Southwestern Institute of Physics Toroidal modelling of interactions between internal kink instability and--
11. Long Zeng Tsinghua University Dynamics of Runaway Electron Generation and Loss in Tokamaks
12. Li Donghua University of Science and Technology Linear and quasi-linear toroidal modeling of resonant magnetic--
13. Massimo Curioni University of Milano-Bicocca First-time demonstration of the three-ion scheme for radio-frequency--
14. Jianwen Liu ASIPP Breaking of ion temperature clamping in EAST electron-heated H-mode--
15. Anshu Lang Southwestern Institute of Physics Role of E x B velocity shear for triggering the I-mode and ion ITB on the--
16. Valerian Hall-Chen Agency for Science, Technology and Research Feasibility study on using Doppler backscattering measurements to infer--
17. Ming Xu ASIPP MHD and energetic ions instabilities related to the formation of ITBs in--
Magnetic Fusion-2 (Organized Session):

1. Yusuke Kosuga Kyushu University A review of phase-space turbulence: why it is important
2. Tatsuya Kobayashi National Institute for Fusion Science Phase-space tomography for charge exchange recombination spectroscopy
3. Walter Gekelman University of California, Los Angeles Electron hole experiment on basic experiment
4. Guilhem Dif-Pradalier CEA Cadarache Recent progress on GYSELA turbulence simulation
5. Emi NARITA QST Naka Institute Convolutional neural network models for forecasting heat fluxes --
6. Hyowon Shin Korea Atomic Energy Research Institute Toward a universal understanding of plasma, light-matter interaction in--
7. Hiroaki Nakamura National Institute for Fusion Science Toward a universal understanding of plasma, light-matter interaction in--
8. Jong Yoon Park Seoul National University Toward a universal understanding of plasma, light-matter interaction in--
9. Isuiki Sakon Tokyo University Toward a universal understanding of plasma, light-matter interaction in--
10. Feiyue Mao HUST Role of the multiple mode interaction on the excitation of 2/1 tearing --
11. Tatsuya Matsuo Hiroshima University Toward a universal understanding of plasma, light-matter interaction in--
12. Michiaki Inomoto The University of Tokyo Transformation of energy conversion by active control of in-plane electric--
13. Hiroshi Hasegawa Institute of Space and Astronautical Science Magnetic reconnection and its related events in magnetized plasmas
15. Yu Xu Donghua University Toward a universal understanding of plasma, light-matter interaction in--
16. Xiao Bingjia ASIPP Excitation of ULF waves and transport of plasma through wave-particle--
17. Kazuhiro Yamamoto University of Tokyo Simulations of energetic-particle driven Alfvén eigenmodes in--
18. Y Todori NIFS Alfvén eigenmodes in tokamak laboratory plasmas
19. Siqi Zhao Deutsches Elektronen Synchrotron DESY Multi-spacecraft Observations of the Alfvén Transition from Weak to--
20. Yuichio Otsuka Nagoya University GNSS observations of traveling ionospheric disturbances in the ionosphere
Mini-Workshop for Women in Plasma Physics (WIPP)

A Mini Workshop for Women in Plasma Physics (WIPP) will be held as part of the Association of Asia Pacific Physical Societies - Division of Plasma Physics (AAPPS-DPP) international conference at Port Messe Nagoya, Japan on Monday 13th of November 2023.

Women are excellent contributors to diverse fields of Plasma Physics, but they often face different challenges. The Mini-Workshop WIPP-AAPPS-DPP provides a platform for women scientists to discuss and share their journey. The workshop aims to understand the issues that women scientists and researchers face while pursuing their careers. It will discuss women’s obstacles and problems, how they are overcome, and what can be done to motivate their participation in research, conferences, and workshops.

The workshop is open to everyone, but we encourage women participants of AAPPS-DPP to actively contribute as presenters/speakers or discussion participants. It will be a great networking event. Please submit your interest here: https://protect-au.mimecast.com/s/zPrxCYW8NocDprVj1tu0-9zJ?domain=forms.gle

Date and Time: Monday 13th November 2023, Time 19:00-21:00

WIPP committee chair: Dr Anne Mai-Prochnow
Contact: anne.mai-prochnow@sydney.edu.au

Mini-workshop on probing, controlling, and understanding wave-particle interactions in space and laboratory plasmas

Organizer’s name: Yuto Katoh (Tohoku Univ., Japan)

Preferred date and time: November 12 (Sun) 13:00-16:00

Number of participants: <50

Purpose: This workshop aims to understand similarities/differences of (i) wave-particle interactions occurring in space and laboratory plasmas (WPIs), (ii) particle acceleration/heating in plasmas through WPIs, and (iii) artificial control method of WPIs. The latest issues related to WPIs in space and laboratory plasmas will be shared through oral presentations (given by invited speakers) and discussions with workshop participants.
Fraud attempt to participants: There were some phone calls and follow-up emails asking for credit card information for hotel accommodations to the speakers of past in-person conferences. Do not respond and ignore in case. It is fraud attempt.

[18] Publication

APPS-DPP encourage publication of plenary and invited talks to our official journal Reviews of Modern Plasma Physics (RMPP) https://www.springer.com/journal/41614. Article types are general "Review", "Special Topics" focused on your/group works, "Tutorial" for introduction, "History", "Chandrasekhar Lecture", "Plasma Innovation Lecture". Contact RMPP chair (M. Kikuchi) for any question. RMPP is a hybrid journal with subscription access and open access options. No Publishing fee is required for subscription option while open access option requires publication charge.

For original article, PFR(http://aappsdpp.org/DPP2023/html/6publications/publications.html) welcome submission.

[19] AAPPS-DPP Prizes

19.1 2023 Subrahmanyan Chandrasekhar Prize of Plasma Physics

Selection of 2023 Chandrasekhar Prize of Plasma Physics is under way and the winner will give first plenary talk in this conference.

19.2 2023 Plasma Innovation Prize

Selection of 2023 Chandrasekhar Prize of Plasma Physics is under way and the winner will give first plenary talk in this conference.

19.3 AAPPS-DPP Young Researcher (U40) Award 2023

Nomination is under way and the winner will give a talk at this conference. Nomination deadline extended to June 15. Selection committee chair is Prof. Amita Das.

19.4 AAPPS-DPP U30Doctoral Scientist / Student Award 2023

Nomination is under way and the winner will give a talk at this conference. Nomination deadline extended to June 15. Selection committee chair is Prof. Kunioki Mima.

19.5 AAPPS-DPP Poster Prize 2023

DPP is recognizing significant poster presentation at the annual conference as AAPPS-DPP Poster Prize since 2018 for both students and young/senior researchers. Selection committee will select number of significant posters. Winner will receive a certificate and a book gift (only limited number is available).
International Organizing committee
IOC chair: Abhijit Sen (IN), IOC Co-chairs: Mitsuru Kikuchi (JP), Rajdeep S. Rawat (SG), Wonchoo Choe (KR), Yutong Li (CN),

Plasma societies: Karl Ruckenstein (APS-DPP), Kristel Crombé (EPS-DPP), Ge Zhong(CPS-DPP), Yasuhiko Sentoku (JSP-plasma), Dong-o JEON(KPS-DPP), Prabal K. Chattopadhyay (PSSI), Satoshi Yamamoto (ASJ), Yipeng Jing (CAS), GC Anupama (ASI), Yasunari Omura (SGEPSSS), Ji Wu (CSSR), Kazuo Kyuma (LSJ), Jie Zhang (CPS-DHEDP), Mineo Hiramatsu (JSAP-DPE), Yuan-Hong Song(DPP-CSTAM), Jing Zhang (DPP-CSTAM), Yasuhioko Takeiri (JSPF), Sor Saw Heo (AAAPT), Matthew J. Hole (Australian ITER Forum), Sooseok Choi(PDD-KVS), Narayan P. Chapagain (NPS), Kuru Ratnamvelu (MIP),

DPP Prize Laureates: Don Melrose (AU), Lou-Chuang Lee (TW), Chio Zong Cheng (TW), Toshiki Tajima (JP/US), Liu Chen (CN), Kazunari Shibata (JP), Hyeon Park (KR), Masaru Hori (JP), TS Hahn(KR), Arnaib Rai Choudhuri (IN),

CD: K.R. Sreenivasan (US/IN), Ranjit Panday (Gi), Grigorii Falkovich (IL), Michio Yamada (JP), Roldag Segaedee(US), Uriel Frisch(KR), Patrick Diamond (CN/US), Amita Das (IN), Y. Kosuga(JP), Eunjin Kim(UK),

Fundamental: Akira Hasagewa (JP), R.L. Dewar (AU), Chuan Sheng Liu (CN), Zhenbo Yoshida(JP), Hideo Sugama(JP), Akihide Fujisawa(JP), Yasuhiyo Ono(JP), Guoyang Fu (CN), Shaojie Wang (CN), F. Zonca (IT), Dominique Escande (FR), Xavier Garabet (FR), George Tynan (US), James Drake (US), Yasushi Todo (JP), Hui Li(US), Toseko Hikata(US),

Basic: Lin I(TW),Chiw-San Wong (MY), Rajaraman Ganesh (IN), Michel Bonitz (DE), Giovanni Manfredi (FR), Amir Misra (IN), Osamu Ishihara (JP), Guru Ganguli (US), Troy Carter (US), Mike Maul(US), Cary Forrest (US), Shunjiro Shinohara (JP), Hiroshi Akatsuka (JP), Yaming Zou (CN), Krow Chu (TY), Yoshihru Uesugi (JP), Igor Levchenko (SG), Katia Bazaka (AU), Shin-Hun Chen (TW), Aivinash Khare (IN), Yasuhiro Idomura (JP), Haruhiko Hirumura(JP), Frank Jenko (US), Zhiong Lin (US), Fredrick Skiff (US), Cormac Corr (AU), Heremba Bailung (IN),Sudeep Bhattacharje(IA), A M Mamun(EN),Yan Feng (CN), Kenji Tanaka (JP), Choong-Seok Chang (CN), Kazunori Nakahashi (JP), Gumsu Yun (KR), Takuma Yamada(JP), Fernando Haas(BR), Izumi Murakami(JP), M. Nishiura(JP),

Applied: Rikizo Hatakeyama (JP), Francis F. Chen (US), S.J. Yoo (KR), Yi-Kang Pu (CN), Masaharu Shiratani (JP), Giichiro Uchida (JP), Paul Kim Ho Chu (HK), Eun Ha Choi (KR), Michael Keidar (US), Felipe Izan (UK), Eric Johnson (FR), Heiping Li (CN), Jinxiu Fan (CN),

Laser: Kuniko Mima (JP), Xian Tu (CN), Chang Hee Nam (KR), Heinrich Hor (AU), Ryoosuke Kodama (JP), G. Ravindra Kumar (IN), M. Krishnamurthy (IN), Zheng Ming Shen (CN), Yoshiaki Kato (JP), Tetsuya Kawachi (JP), Chan Joshi (US), E. Michael Campbell (US), Sylvie Jacquetouet (EU), Robert Bingham (UK), Sergei Bulanov (EU), Vladimir Tikhonchuk (FR), Michel Koenig(FR), Kazunori Tanaka (JP), Michael Keidar (US), Felipe Izan (UK), Eric Johnson (FR), Heiping Li (CN),

Solar/Astro: Chris Crabtree (US), Jiansen He (CN), Quanming Lu (CN), Toru Hada (JP), Abraham Chian (AU),

Magnetic Fusion: Kwon (KR), Yongseok Hwang (KR), Hiroshi Yamada (JP), Siwoo Yoon (KR), Lu Wang (CN), Tomohiro Morisaki (JP), Guosheng Xu (CN), Xiang Tu He (CN), Chang Hee Nam (KR), Heinrich Hor (AU),

Space/Geomag: Xiaogang Wang (CN), Lin Ni Hau (TW), Gurbax Lakhina (IN), Iver Cairns (AU), Dae-Young Lee (KR), Daniel Baker (US), Peter Yoon (US), Yu Lin (US), Fouad Sahraouli (FR), Akira Kageyama (JP), Chi Wang (CN), Yuinsu Ehihara (JP), Xuening Bai (CN),

Fusion Companies: Martin Peng(CN), Mikhail Gryaznevich(UK), Junichi Miyazawa (JP), S. Kondo(JP), M. Katsurao(JP), D. Gates(US),

Scientific Program committee
General PC chair: M. Nishiura (VP), Eunjin Kim(Vice), T.S. Hahn(Vice), Xavier Garabet, Steve Tobias, Zhibin Guo, Amita Das, Yosuke Kosuga, Lu Wang, Feng Yuan (CN), Zheng Ming Shen (CN), Yoshiaki Kato (JP), Tetsuya Kawachi (JP), Chan Joshi (US), E. Michael Campbell (US), Sylvie Jacquetouet (EU), Robert Bingham (UK), Sergei Bulanov (EU), Vladimir Tikhonchuk (FR), Michel Koenig(FR), Kazunori Tanaka (JP), Michael Keidar (US), Felipe Izan (UK), Eric Johnson (FR), Heiping Li (CN),

Robert Dewar(Chair), P.J. Morrison(Vice), Susanna Cappello, Fatima Ebrahimi, Zhisong Qiu, Anna Tenerani, Naoki Sato, Abraham Chian, Hogun Jiang, Ding Li, Hideo Sugama, Arnaib Rai Choudhuri, Robert Dewar(Chair), P.J. Morrison(Vice), Susanna Cappello, Fatima Ebrahimi, Zhisong Qiu, Anna Tenerani, Naoki Sato, Abraham Chian, Hogun Jiang, Ding Li, Hideo Sugama, Arnaib Rai Choudhuri, Robert Dewar(Chair), P.J. Morrison(Vice), Susanna Cappello, Fatima Ebrahimi, Zhisong Qiu, Anna Tenerani, Naoki Sato, Abraham Chian, Hogun Jiang, Ding Li, Hideo Sugama, Arnaib Rai Choudhuri, Robert Dewar(Chair), P.J. Morrison(Vice), Susanna Cappello, Fatima Ebrahimi, Zhisong Qiu, Anna Tenerani, Naoki Sato, Abraham Chian, Hogun Jiang, Ding Li, Hideo Sugama, Arnaib Rai Choudhuri, Robert Dewar(Chair), P.J. Morrison(Vice), Susanna Cappello, Fatima Ebrahimi, Zhisong Qiu, Anna Tenerani, Naoki Sato, Abraham Chian, Hogun Jiang, Ding Li, Hideo Sugama, Arnaib Rai Choudhuri, Robert Dewar(Chair), P.J. Morrison(Vice), Susanna Cappello, Fatima Ebrahimi, Zhisong Qiu, Anna Tenerani, Naoki Sato, Abraham Chian, Hogun Jiang, Ding Li, Hideo Sugama, Arnaib Rai Choudhuri, Robert Dewar(Chair), P.J. Morrison(Vice), Susanna Cappello, Fatima Ebrahimi, Zhisong Qiu, Anna Tenerani, Naoki Sato, Abraham Chian, Hogun Jiang, Ding Li, Hideo Sugama, Arnaib Rai Choudhuri,
A (Applied); Tao Shao(Chair), Taijin Wang, Hyun-Ha Kim(Vice), Douyan Wang, Dae Hoon Lee(Vice), Soosook Choi, Srikumar Ghorui(Vice), Alphasoa Joseph, Shayan Xu(Vice), Anne Mai-Prochnow(Vice), Michael Keidar(Vice), Allen Garner, Xin Tu, Giichiro Uchida, Hiroshi Akatsuka, Kazunori Koga,

L (Laser); Hyyong Suk(Chair), Min Chen(Vice), Shinsuke Fujioka(Vice), Kitaee Lee(Vice), Prashant Kumar Singh(Vice), Yoshitaka Morii, Takuo Okuchi, Mamiko Niishichi, Byoung-ick Cho, Jae-hoon Kim, Min-sup Hur, Zheng-Ming Sheng, Jian Zheng, Yongtao Zhao, Bin Qiao, Mritunjay Kandu, Bhuvanesh Ramakrishna, Tae Moon Jeong, Kei Nakamura, Anand Moorti, Weimin Zhou,

SG (Space/Geomagnetism); Yoshiharu Omura(Chair), Peter Yoon(Vice), QuanMing Lu(Vice), Tohru Hada, Lin-Ni Hau, Dong-Hun Lee, Abraham Chia, Gurbax Lakhina, Nazih Rubab, David Ruffolo, Meng Zhou, Yasuhiro Naka, Kanako Seki, Masahiro Hoshino,

SA (Solar/Astro); P. F. Chen (Chair), Ryoji Matsumoto (Co), Jungyeon Cho (Co), Hantao Ji, Jin Lin Han, Kyungsuk Cho, Patrick Antolin, Brigitte Schmiede, Durgesh Tripathi, Shi-ichiro Inutsuka, Hi Li, Takaaki Yokoyama, Takeru Suzuki, Lou Lee, FuLai Guo, Rony Keppens,

MF1 (Core&Edge); Jae-Min Kwon(Chair), Min Xu(Vice), Emi Naita(Vice), Yong-Su Na(Vice), Indranil Bandyopadhyay, Won-Ha Ko, Choongki Sung, Masaru Furukawa, Tokihiko Tokuzawa, Joelle Mailoux, Andrea Garofalo, Liang Wang, Wulv Zhong

MF2 (Organized Session); Katsumi Ida (Chair), Yunfeng Liang (Vice), Choong-ki Sung (Vice), Kenichi Nagaoka, Yuto Katoh, Akihide Fujisawa, Xiang Gao, Li Li, Young Dae Yoon, Kyung Sun Park, Hantao Ji, George McKEE

Local Organizing Committee

[21] NIFS Tour

The tour takes you to NIFS to visit the experimental hall of LHD, the control room, CompleXcope (virtual reality), the supercomputer, CHS, and other facilities (heating equipment room, power supply building etc.). Limited to the first 70 applicants.

Date: 12:30, 12th November, Sunday

Meeting place: Nagoya station, Taikou-Dori-guchi exit

Schedule:
12:30 Assembly
13:00 Bus starts at Nagoya station
14:00 Arrival at NIFS

NIFS Tour
16:00 Bus starts at NIFS
17:00 Arrival at Nagoya station

(The schedule is subject to change due to traffic condition.)
1. **Toyota Commemorative Museum of Industry and Technology** https://www.tcmit.org/english/

Access: It is located near Nagoya station. At Meitetsu Nagoya station, take Meitetsu Inuyama Line bounds for Iwakura → Get off at Sako station. 3 minutes walk from Sako Station.

Access: At subway Nagoya station, Take Higashiyama line bounds for Hujigaoka → Get off at Hujigaoka station, change to Linimo Tobu-Kyuryo Line bound for Yakusa → Get off at Geidai-dori Station. A five-minute walk from Exit 1 to west.

Access: Subway Nagoya station, Take Higashiyama line bounds for Hujigaoka → Get off at Hujigaoka station, change to Linimo Tobu-Kyuryo Line bound for Yakusa → Get off at Ai-Chikyu haku kinen kouen Station.

Ticket: A ticket has to be purchased prior to visit through the web site. The tickets for November are sold from 10 August at the web site.

Access: Take Sakura-dori subway line at Nagoya station bound for Hisaya-odori. Change the train at Hisaya-odori and take Meijo subway line clockwise. Get off at Nagoyajo.

5. **Port of Nogoya public aquarium** https://nagoyaaqua.jp/english/

Access: Take Higashiyama subway line at Nagoya station bound for Hujigaoka. Change trains at Sakae Station and Take Meijo Line (counterclockwise) bound for Kanayama. Get off at the last stop Nagoyako Station. It’s a 5-minute walk from exit 3. Or Take JR Line at Nagoya station bound for Kozoji or Toyohashi. Get off at Kanayama Station, change to the Meiko Subway Line bound for Nagoyako Station. Get off at the last stop Nagoyako Station and it’s a 5-minute walk from exit 3.
6. Legoland Japan
https://www.legoland.jp/en/

Access: Near the conference venue.

7. SCMAGLEV and Railway park
https://museum.jr-central.co.jp/en/

Access: Near the conference venue.

8. Nagoya Marine Rider
https://www.shachi-bus.com/marine/

Amphibious buses take you from Sakae to Nagoya port, and visit the Port of Nagoya public aquarium. You can take a subway Meijo line to return to Nagoya station.

Access to Sakae bus station: Take Sakura-dori subway line at Nagoya station bound for Hisaya-odori. Get off at the Hisaya-odori station. 5 minute walk from exit 5A or 23.

9. Cruise Nagoya
(Operates on Saturdays and Sundays only)
https://cruise-nagoya.jp/en/

Cruise Nagoya connects the most popular sightseeing spots in Nagoya. It takes about 75 min. You can take a tour from Sasashima-raibu station to Kinjo Pier by the boat, and return to Nagoya station by train (Aonami line).

Boat embarkation stations:
- Sasashima Live (Take Aonami line bound for Kinjo-futo at Nagoya station. Get off at Sasashima-raibu. 3 minute walk to the boat.)
- Canal Resort
- Minato AULES
- Garden Pier
- Bluebonnet
- Kinjo Pier (near the conference venue)

10. Nagoya Sightseeing Route Bus Me~guru?

Ona can take a bus tour for sightseeing in Nagoya city. The bus will take you around sightseeing spots such as Toyota Commemorative Museum of Industry and Technology, Shikemichi, Nagoya castle, Tokugawa-en, Cultural path Futaba Museum etc.