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 Closure models are commonly employed in 

Large Eddy Simulations (LES) of 

hydrodynamic turbulence. These models are 

usually driven by theoretical considerations – a 

common and quite successful example is the 

Smagorinsky model. This strategy has been 

much less utilized in plasma turbulence, one 

reason being the difficulty to elaborate 

theory-based closure models, and also the large 

number of possible closure schemes. One 

example is the identification of an eddy 

viscosity by Smith and Hammett to model the 

single field Hasegawa-Mima equation [1].  

The objective of this work is to leverage recent 

developments in machine learning to identify 

relevant closure models for more complex 

systems than Hasegawa-Mima turbulence. In 

order to reduce computational cost, this 

methodology is applied to the 2D 2 field 

Hasegawa-Wakatani model [2], a minimal 

system with turbulent transport. Training of a 

neural network is performed with data from 

well resolved spectral Direct Numerical 

Simulations (DNS). Identification of a full 

closure scheme still represents a formidable 

task. The model is thus constrained by 

available Direct Interaction Approximation 

(DIA) theory, more precisely its Eddy Damped 

Quasi-Normal Markovian (EDQNM) version 

[3]. Under reasonable assumptions, DIA theory 

predicts a closure model with 6 diffusion and 

hyperdiffusion coefficients, which couple 

density and vorticity equations. The machine 

learning model is based on a Convolutional 

Long Short-Term Memory (ConvLSTM) 

architecture [4]. The identification of the six 

unknown coefficients is formulated as an 

inverse problem, following the framework of 

Physics-Informed Neural Networks (PINNs). 

This model has been tested on low resolution 

LES simulations, which were compared to 

highly resolved DNS data. Agreement is found 

satisfactory for a broad range of input 

parameters (adiabaticity coefficient, and 

density gradient, see example Fig.1). Quite 

interestingly, it appears that viscosity is 

negative and hyperviscosity positive, in 

accordance with a previous Kraichnan’s 

prediction for eddy viscosity in 2D turbulence 

[5]. In addition, cross-terms, i.e. density 

diffusion in vorticity equation, and vorticity 

diffusion in continuity equation, are small 

compared with diagonal coefficients. This 

result is consistent with findings from a 2-scale 

DIA study from Gürcan and co-workers [6].  

 
Fig. 1: Comparison of particle flux spectra 

computed from DNS (blue), low resolution 

simulations (orange) and LES with closure 

terms computed an ML algorithm (green).  
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