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Low temperature plasmas have diverse applications 

including plasma processing1, electric thrusters2, and 

fusion device wall modeling3. Among these, helicon 

plasma sources4,5 are attracting attention for generating 

high density plasmas (~1019 m-3). However, density limits 

have been observed in helicon plasmas, and a detailed 

understanding of the underlying mechanisms is essential 

for practical use. Modeling plasma-neutral interactions is 

important but computationally challenging due to the 

complex multiscale nature. 

 

Physics-Informed Neural Networks (PINNs)6 have 

emerged as a mesh-free approach for solving PDEs by 

embedding governing equations into the loss function, 

ensuring physical constraints without discretization. 

Compared to conventional methods, PINNs offer greater 

flexibility and efficiency by leveraging automatic 

differentiation and GPU-based parallel computing, 

making them suitable for large-scale plasma simulations. 

Despite their potential, few studies have used PINNs to 

explicitly address the complexities of electron and ion 

dynamics while considering their multiscale nature.  

In this study, we establish a foundational framework for 

two-fluid modeling of electrons and ions using PINNs. We 

incorporate the fluid equations, initial conditions, and 

boundary conditions directly into the PINNs loss function, 

which is then minimized to obtain the simulation results 

(Figure 1). To handle the multiscale nature of electrons 

and ions, we apply appropriate normalization techniques 

that significantly improve learning stability and accuracy. 

We also find that specifying Dirichlet boundary conditions 

(fixed variable values) yields more accurate predictions 

than Neumann conditions (fixed derivatives). Even when 

using Neumann conditions, adding physical constraint 

terms to the loss function improves convergence and 

accuracy. Figure 2 illustrates the prediction results from 

the trained PINNs model under Dirichlet boundary 

conditions. Panels (a) and (b) compare the predicted 

electron density, ion density, and ion x-velocity at the 

initial and final normalized times, respectively, with exact 

numerical solutions. The predictions by PINNs (red lines) 

show good agreement with the exact solutions (blue lines), 

demonstrating that the method captures the essential 

features accurately. Panel (c) shows the time-space map of 

the relative error, confirming that errors remain low 

throughout the simulation domain. 
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Figure 1. Neural Network architecture of this study. 

Training points for initial conditions (𝑁𝑖𝑐), boundary 

conditions (𝑁𝑏𝑐) , and PDE residuals (𝑁𝑝𝑑𝑒)  are 

sampled from the spatio-temporal domein and used to 

evaluate the loss function during training. 

Figure 2. PINNs prediction results; (a) initial (𝑡̂ = 0 ) 

and (b) final (𝑡̂ = 1) snapshots, and (c) time-space map 

of relative error for electron/ion densities (𝑛𝑒,𝑛𝑖) and ion 

x-velocity (𝑢𝑖𝑥) , with Dirichlet boundary conditions. 

Red lines: PINNs predictions; Blue lines: exact solutions 

obtained from conventional numerical methods. 


