

MHD analysis of electromagnetic GAMs in up-down asymmetric tokamaks

Zhe Chen¹, Yixiang Li¹, Haijun Ren^{1,*} and Hao Wang²

¹ University of Science and Technology of China

² National Institute for Fusion Science
e-mail (speaker): hjren@ustc.edu.cn

Geodesic acoustic modes (GAMs), high-frequency zonal flows in toroidal fusion plasmas, are essential for turbulence regulation and transport control^[1]. In realistic tokamaks, non-circular flux surfaces arising from elongation, triangularity, and asymmetry significantly modify GAM frequencies and perturbations. Yet, analytical studies of electromagnetic GAMs^[2] in such geometries remain scarce. Here, we perform an MHD analysis of electromagnetic GAMs in up-down asymmetric, non-circular tokamaks using a Miller-like equilibrium model.^[3] In the long-wavelength and local limits, the GAM governing equations are derived from the ideal MHD framework as follows:

$$\begin{split} &\left(1 + \frac{\gamma p}{B^2}\right)\phi + \frac{c_s^2}{\omega^2}B\nabla_{\parallel}\left(B^{-1}\nabla_{\parallel}\phi\right) + 2\mathcal{K}_{\theta}g^{11}\xi_{\theta} = 0,\\ &\xi_{\theta} + \frac{1}{\rho\omega^2}\frac{B^2}{g^{11}}\nabla_{\parallel}\left[B^{-1}g^{11}\nabla_{\parallel}(B\xi_{\theta})\right] + 2\frac{c_s^2}{\omega^2}\mathcal{K}_{\theta}\phi = 0. \end{split} \tag{1}$$

Here, $\gamma, p, \rho, B, c_s = \sqrt{\gamma p/\rho}$, $\omega, \overrightarrow{\mathcal{K}}$ and $\overrightarrow{\xi}$ are adiabatic index, pressure, density, magnetic field, sound speed, mode frequency, magnetic curvature and Lagrangian displacement, respectively. $\phi = \nabla \cdot \overrightarrow{\xi}$, $g^{11} = \nabla r \cdot \nabla r$ and the subscript θ indicates the poloidal component.

The Miller-like flux surface is described as follows^[4]:

$$R = R_0(r) + r\cos\left[\theta + \arcsin\delta(r)\sin\theta\right] + \sigma(r)r\sin\theta,$$

$$Z = \kappa(r)r\sin\theta.$$
(2)

Here, κ , δ and σ are the elongation, triangularity and asymmetry parameter. Because $R(r,\theta) \neq R(r,-\theta)$ for $\sigma \neq 0$, σ represents the up-down asymmetry of the cross-section. Assuming weakly noncircular flux surface and low β_0 (thermal to magnetic pressure ratio), explicit analytical forms for the $\vec{\xi}$, ω and magnetic perturbations are obtained. Among them, the poloidal magnetic perturbation \hat{B}_{θ} is frequently observed in diagnostics of GAM, and its expression is derived as:

$$\frac{\hat{B}_{\theta}}{B_{0}} = -q\beta_{0} \frac{\xi_{\theta,0}}{R_{0}} \left[\frac{9\varepsilon - 5\delta - s_{\delta}}{2} \sin\theta + \sin 2\theta + \frac{4\Delta' + 2\delta - \varepsilon - s_{\delta}}{6} \sin 3\theta - \frac{4\eta + 3s_{\kappa}}{8} \sin 4\theta + \frac{3\delta + 2s_{\delta}}{10} \sin 5\theta - \frac{s_{\sigma}}{4} - \sigma \cos 2\theta \right]
- \frac{4\sigma + 3s_{\sigma}}{8} \cos 4\theta + 0 \left(\frac{\beta_{0}^{2}q\xi_{\theta,0}}{R_{0}} \right) + 0 \left(\frac{\lambda^{2}\beta_{0}q\xi_{\theta,0}}{R_{0}} \right).$$
Here, q is safety factor, $\eta = \kappa - 1$, $\xi_{\theta,0}$ is the θ -independent part of $\xi_{0}R_{0}/R_{0}$, ξ_{0} and λ' are the inverse.

Here, q is safety factor, $\eta = \kappa - 1$, $\xi_{\theta,0}$ is the θ -independent part of $\xi_{\theta}R_0/R$. ε and Δ' are the inverse aspect ratio and Shafranov shift gradient. s_{κ} , s_{δ} and s_{σ} represent radial gradients of κ , δ and σ . All shaping parameters $(\varepsilon, \eta, \delta, \Delta', \sigma, s_{\kappa}, s_{\delta}, s_{\sigma})$ are assumed to be of order $O(\lambda)$ for weakly noncircular flux surface, with λ being a small expansion parameter for asymptotic analysis.

Equation (3) indicates that \hat{B}_{θ} is primarily dominated by the $\sin 2\theta$ term, independent of shaping effects. Updown asymmetry (σ) introduces $\cos 2\theta$ and $\cos 4\theta$ components, making \hat{B}_{θ} asymmetric when $\sigma \neq 0$. The amplitude ratio of $\cos 2\theta$ to $\sin 2\theta$ components is σ and the phase shift is π , consistent with MHD simulations^[4]. Other shaping parameters induce $\sin m\theta$ components $(m=1,3,4,5)^{[2]}$, among which the $\sin \theta$ component is most significant due to large coefficient $(9\varepsilon - 5\delta - s_{\delta})/2$. For large ε or negative δ , the $\sin \theta$ term can rival or exceed the $\sin 2\theta$ component, as shown in Figure 1(a). Kinetic simulations^[5] yield an amplitude ratio (between $\sin \theta$ and $\sin 2\theta$ components) of 0.59, closely matching the analytical result of 0.61, as seen in Figure 1(b).

References

- [1] G. Conway et al, Nucl. Fusion 62, 013001 (2022)
- [2] C. Wahlberg and J. Graves, Plasma Phys. Control. Fusion **58**, 075014 (2016)
- [3] Z. Chen et al, Nucl. Fusion 67, 045008 (2025)
- [4] W. Guo and J. Ma, Plasma Phys. Control. Fusion **66**, 035005 (2024)
- [5] B. Xie *et al*, Plasma Phys. Control. Fusion **64**, 095009 (2022)

Figure 1. Ratio of the $\sin\theta$ to the $\sin2\theta$ components of \hat{B}_{θ} . (a) Ratio versus δ . Parameters: $q=4, \kappa=1, \Delta'=s_{\kappa}=s_{\delta}=\sigma=s_{\sigma}=0$. Numerical spots are solutions of equation (1) without assuming the small parameter λ . (b) Ratio versus $\beta(\equiv 2p/B_0^2)$ for $q=4, \epsilon=0.136$ and circular flux surfaces. Simulation results are from Figure 18 of Ref.[5].