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Toroidal Alfvén Eigenmodes (TAEs) are key instabilities in 

magnetically confined plasmas, due to their interaction with 

energetic particles and background turbulence [1]. By 

enhancing energetic ion transport, they could degrade 

confinement in future devices like ITER [2,3]. While their 

excitation mechanisms are relatively well understood, their 

nonlinear saturation —especially the role of zonal flows — 

remains elusive. Furthermore, nonlinear interactions between 

TAEs and drift-wave microturbulence are not well 

understood. Some experimental evidence suggests that TAEs 

may even mitigate turbulence. The understanding of these 

processes requires global, full-F, flux-driven simulations, as 

numerous global gyrokinetic studies of TAEs have been 

performed, but to our knowledge, none have yet used a full-

F, flux-driven framework. This approach can unveil 

unforeseen effects during the nonlinear evolution of TAE 

modes.  
                                                 

In this study, we present simulations of both antenna-driven 

and fast ion-driven TAEs using the GYrokinetic SEmi-

LAgrangian (GYSELA) code, a global, flux-driven, full-F, 

semi-Lagrangian framework designed for nonlinear 

gyrokinetic simulations of plasma turbulence in tokamaks 

[4]. To investigate the linear excitation and evolution of 

TAEs, we have solved the electromagnetic gyrokinetic 

equations. A mixed-variable scheme has been implemented 

to solve the Ampère equation [5]. This helps in reducing the 

numerical inaccuracies associated with the parallel vector 

potential. 

 

The simulation results demonstrate consistent and accurate 

modeling of both antenna-driven and energetic particle (EP) 

driven TAEs, with trends that closely align with previously       

reported ITPA benchmark studies in [6,7]. In the antenna-

driven scenarios, resonant excitation of 𝑚 = 3 and 𝑚 = 4 

modes for 𝑛 = 2 TAEs near  𝑟/𝑎 ≈ 0.5 with sharp frequency 

response peak at 𝜔𝑎𝑛𝑡/𝜔𝐴 ≈ 0.287, confirm precise 

matching with TAE eigenfrequencies as shown in Fig.1(a)-

(b). This further validates GYSELA’s capability to accurately 

capture both the radial localization and symmetry of the 

modes. In EP-driven scenarios, GYSELA accurately 

reproduces the expected growth rate and frequency scaling 

with fast-ion temperature (𝑇𝑓), showing close agreement with 

other codes, as illustrated in Fig. 2(a)-(b). Phase-space 

diagnostics based on energy and canonical toroidal 

momentum reveal multiple resonances in both linear and 

nonlinear phases, offering insights into EP-driven mode 

saturation.  A potential signature of zonal flows appears in the 

radial electric field evolution, likely driven nonlinearly by 

antenna-excited TAEs, indicating self-generated shear layers 

critical for regulating turbulence and saturation. Recent 

works [8,9] further emphasize the pivotal role of zonal flows 

in the nonlinear saturation of EP-driven modes.  

                              (a)                                                       (b) 

Fig.1: (a) Radial profile of electrostatic plasma potential for 

𝑛 = 2 TAE mode. The radial profile of antenna potential is 

depicted in black-dashed curve. (b) Linear excitation of  𝑛 =

2 TAE at arrange of frequencies near the resonance. The 

amplitude of plasma potential is integrated in the radial 

direction and its maximum over a time span is taken.     

                        (a)                                                     (b) 

Fig.2: (a) Growth rate of the TAE mode as a function of  𝑇𝑓 

for the ITPA case. (b) Corresponding TAE frequency 

variation with 𝑇𝑓 showing strong agreement with other 

established codes. 
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