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Toroidal Alfvén Eigenmodes (TAEs) are key instabilities in
magnetically confined plasmas, due to their interaction with
energetic particles and background turbulence [1]. By
enhancing energetic ion transport, they could degrade
confinement in future devices like ITER [2,3]. While their
excitation mechanisms are relatively well understood, their
nonlinear saturation —especially the role of zonal flows —
remains elusive. Furthermore, nonlinear interactions between
TAEs and drift-wave microturbulence are not well
understood. Some experimental evidence suggests that TAEs
may even mitigate turbulence. The understanding of these
processes requires global, full-F, flux-driven simulations, as
numerous global gyrokinetic studies of TAEs have been
performed, but to our knowledge, none have yet used a full-
F, flux-driven framework. This approach can unveil
unforeseen effects during the nonlinear evolution of TAE
modes.

In this study, we present simulations of both antenna-driven
and fast ion-driven TAEs using the GYrokinetic SEmi-
LAgrangian (GYSELA) code, a global, flux-driven, full-F,
semi-Lagrangian framework designed for nonlinear
gyrokinetic simulations of plasma turbulence in tokamaks
[4]. To investigate the linear excitation and evolution of
TAEs, we have solved the electromagnetic gyrokinetic
equations. A mixed-variable scheme has been implemented
to solve the Ampere equation [5]. This helps in reducing the
numerical inaccuracies associated with the parallel vector

potential.

The simulation results demonstrate consistent and accurate
modeling of both antenna-driven and energetic particle (EP)
driven TAEs, with trends that closely align with previously
reported ITPA benchmark studies in [6,7]. In the antenna-
driven scenarios, resonant excitation of m = 3 and m = 4
modes for n = 2 TAEs near r/a = 0.5 with sharp frequency
response peak at wgn:/w4 = 0.287, confirm precise
matching with TAE eigenfrequencies as shown in Fig.1(a)-
(b). This further validates GYSELA’s capability to accurately
capture both the radial localization and symmetry of the
modes. In EP-driven GYSELA accurately
reproduces the expected growth rate and frequency scaling
with fast-ion temperature (T), showing close agreement with

scenarios,

other codes, as illustrated in Fig.2(a)-(b). Phase-space
diagnostics based on energy and canonical toroidal
momentum reveal multiple resonances in both linear and
nonlinear phases, offering insights into EP-driven mode

=2

saturation. A potential signature of zonal flows appears in the
radial electric field evolution, likely driven nonlinearly by
antenna-excited TAEs, indicating self-generated shear layers
critical for regulating turbulence and saturation. Recent
works [8,9] further emphasize the pivotal role of zonal flows
in the nonlinear saturation of EP-driven modes.
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Fig.1: (a) Radial profile of electrostatic plasma potential for
n = 2 TAE mode. The radial profile of antenna potential is
depicted in black-dashed curve. (b) Linear excitation of n =
2 TAE at arrange of frequencies near the resonance. The
amplitude of plasma potential is integrated in the radial
direction and its maximum over a time span is taken.
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Fig.2: (a) Growth rate of the TAE mode as a function of T
for the ITPA case. (b) Corresponding TAE frequency
variation with Ty showing strong agreement with other
established codes.
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