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A Hamiltonian structure of single helicity and incom-
pressible magnetohydrodynamics (MHD) in a cylindrical
geometry was clarified in [1]. Here, the single helicity
dynamics means that physical quantities have the follow-
ing spatio-temporal dependence

f(r, θ, z, t) =

∞∑
ℓ=−∞

fℓ(r, t)e
i ℓ(Mθ+Nζ), (1)

where f is an arbitrary physical quantity, (r, θ, z) are
the cylindrical coordinates, ζ := z/R0 with 2πR0 be-
ing the length of the plasma column, M and N are the
principal poloidal and toroidal mode numbers, respec-
tively, and ℓ represents their harmonics. A coordinate
α := Mθ/K + z with K := N/R0 ̸= 0 expresses the
phase as ℓ(Mθ +Nζ) = ℓKα. Then f depends on r, α
and t only.

The incompressible fluid velocity u and magnetic
field B are expressed as

u = h×∇φ+ uhh, (2)
B = ∇ψ × h+Bhh, (3)

where φ, uh, ψ and Bh are functions of r, α and t, and

h :=
1

K2
0r

2
(−Krθ̂ +M ẑ) (4)

is an incompressible vector field. Here, θ̂ and ẑ are
unit vectors in the θ and z directions, respectively, and
K2

0r
2 :=M2 +K2r2.

Appropriate phase-space variables for this system
were found to be v = (v1, v2, v3, v4) := (U, uh, ψ,B

⋆
h)

with U := ∇ · (|h|2∇φ) =: Lφ and B⋆
h := gBh − fψ,

where f(r) := h · ∇ × h = −2MK/(K2
0r

2)2 and
g(r) := |h|2 = 1/(K2

0r
2). The Hamiltonian and the

Poisson tensor is given by

H[v] :=
1

2

∫
dV

(
−U(L−1U) + gu2h

−ψ(Lψ) + 1

g
(B⋆

h + fψ)
2

)
, (5)

J :=


[◦, U + fuh] [◦, uh] [◦, ψ] [◦, gBh]

[◦, uh] 0 0 [◦, ψ]
[◦, ψ] 0 0 0

[◦, gBh] [◦, ψ] 0 0

 ,

(6)

where the Poisson bracket is defined by [a, b] := h ·∇a×
∇b for arbitrary functions a and b The evolution equation
is given by ∂vi/∂t = J ijδH/δvj .

Casimir invariants C[v], that satisfy J ijδC/δvj = 0,
were found to be

C[v] =

∫
dV (UF1(ψ)

+ (uhF
′
1(ψ) + F ′

2(ψ)) (B
⋆
h + fψ)

−fF2(ψ) + uhF3(ψ) + F4(ψ)) , (7)

where Fi(ψ) (i = 1, 2, 3, 4) are arbitrary functions of ψ,
and the prime denotes a derivative with respect to ψ.

Equilibria of the system can be obtained by setting the
first variation of the energy-Casimir functional F [v] :=
H[v] + C[v] zero[2]. Three of the four equations can be
solved algebraically as

φ = F1, (8)

uh =
1

1− (F ′
1)

2

(
−1

g
F3 + F ′

1F
′
2

)
, (9)

Bh =
1

1− (F ′
1)

2

(
1

g
F ′
1F3 − F ′

2

)
, (10)

where F ′
1 ̸= ±1 is assumed. The remaining equation can

be summarized as

(
1− (F ′

1)
2
)
Lψ − F ′

1F
′′
1

(
g

(
∂ψ

∂r

)2

+
1

K2r2

(
∂ψ

∂α

)2
)

= − fF ′
2 + F ′

4 +

(
F ′
1F

′
2F3

1− (F ′
1)

2

)′

− 1

2

(
g (F ′

2)
2
+ 1

gF
2
3

1− (F ′
1)

2

)′

.

(11)

Equation (11) is an elliptic equation for ψ(r, α), and
can be solved under an appropriate boundary condition
such as given ψℓ at a radial position. The solution gives a
helically symmetric equilibrium.
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