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Understanding  and  modeling  the  dynamics  of  complex
nonlinear  systems,  whether  governed  by  partial  or
ordinary  differential  equations,  remains  a  central
challenge  across  scientific  disciplines.  Traditional
reduced  order  models  (ROMs),  such  as  Proper
Orthogonal  Decomposition  (POD)  combined  with
Galerkin  projection,  effectively  reduce  system
dimensionality  but  often  struggle  with  stability  and
accurately capturing nonlinear behavior[1].

To address these limitations, we propose an interpretable
machine  learning  framework  based  on  Layered
Polynomial  Neural  Networks  (LPNNs),  inspired  by
recent  advances  in  deep  polynomial  neural  networks[2]

and  interpretable  Polynomial  Neural  ODEs
(PolyNODEs)[3].  LPNNs  are  designed  to  model
multivariate  polynomial  systems  with  scalability  and
robustness.  The  architecture  employs  a  hierarchical
structure  of  sequential  shallow  neural  networks,  each
responsible for modeling polynomial terms of increasing
degree. This layered design enhances expressivity while
maintaining interpretability and dynamically adjusts the
number  of  parameters  to  match  system  complexity,
effectively mitigating underparameterization challenges.

The effectiveness of LPNNs is demonstrated through two
benchmark problems: the Burgers' equation[4], a nonlinear
PDE modeling advection-diffusion phenomena,  and the
Lorenz system[5], a canonical chaotic ODE system. In the
Burgers'  equation  case,  after  applying  POD  to  extract
dominant modes, LPNNs learn the evolution of reduced-
order  coefficients,  effectively capturing both large-scale
advection and small-scale diffusion dynamics with a low
mean  squared  error  (MSE).  Essentially,  LPNNs  learns

the  closure  of  the  Galerkin  ROMs  to  accurately
reconstruct  the  nonlinear  dynamics  without  explicit
knowledge of the governing equations.

For the Lorenz system, LPNNs successfully capture the
chaotic behavior (see Figure 1), accurately reconstructing
the  governing  equations  and  reproducing  the  butterfly-
shaped attractor, thus modeling the sensitive dependence
on initial conditions inherent to chaos.

Despite  the  strong  performance,  scalability  challenges
remain due to the combinatorial  growth of  polynomial
terms in high-dimensional systems, leading to significant
computational  demands.  Future  work  will  focus  on
integrating additional sparsity techniques and extending
the framework to even more complex nonlinear and high-
dimensional dynamical systems.
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Figure 1. Trajectories of the Lorenz system (transparent) and the learned model (solid) for x(t) (blue), y(t) (green), and
z(t) (red), showing the model’s ability to capture the system’s dynamics.
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