

Pursuing Strong-Field QED Studies with multi PW lasers

Mohammad Mirzaie^{1*}, Calin Ioan Hojbota¹, Do Yeon Kim¹, Vishwa Bandhu Pathak¹, Chul Min Kim^{1,2}, Jae Hee Sung^{1,2}, Jin Woo Yoon^{1,2}, Seong Ku Lee^{1,2}, Marija Vranic³, Oscar Amaro³, Ki Hong Bae^{1,2}, Ki Yong Kim^{1,4}, Hyung Taek Kim^{1,2}, Kyung Taec Kim^{1,4} and Chang Hee Nam^{1,4}

¹Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, Korea

²Advanced Photonics Research Institute, GIST, Gwangju, Korea

³GoLP/Instituto Superior Tecnico Unversidade de Lisboa, Lisbon, Portugal

⁴Dept. of Physics and Photon Science, GIST, Gwangju, Korea

*E-mail: mirzaie@ibs.re.kr

State-of-the-art high-power laser systems are beginning to make it possible to explore quantum electrodynamics (QED) in the nonperturbative regime, electromagnetic fields approach or surpass the so-called critical "Schwinger" limit of QED [1]. In this extreme regime, phenomena such as Breit-Wheeler pair production, vacuum birefringence, and quantum radiation reaction are predicted to emerge — effects that remain unobserved in controlled laboratory settings. Reaching the required field strengths demands laser intensities around 2.3×10²⁹ W/cm², far exceeding the present maximum of 10²³ W/cm² [2]. A promising approach to access this regime involves Compton scattering between ultrarelativistic electron beams and ultra-intense laser pulses, offering a viable platform to investigate strong-field QED phenomena. Progress in laser-plasma accelerator technology, especially through laser acceleration (LWFA) [3], has created new opportunities for fully optical strong-field QED experiments, which are now being pursued by research groups worldwide.

In our recent study, we carried out experiments examining nonlinear Compton scattering in intense laser fields, where a multi-GeV electron simultaneously interacts with hundreds of laser photons. Using LWFA, we produced an ultra-relativistic electron beam and collided it with a high-

intensity laser pulse, reaching field intensity half of Schwinger limit. This interaction generated high-energy gamma rays through multiphoton Compton scattering, with photon energies in GeV scale — well beyond the linear Compton scattering limit — marking the onset of the strongly nonlinear regime [4]. The observed gammaray spectra closely matched predictions from QED-PIC simulations and analytical models, reinforcing the theoretical understanding. These findings not only confirm nonlinear Compton scattering under strong-field conditions but also set the stage for future investigations into more intricate processes, such as nonlinear Breit-Wheeler pair production, as higher laser intensities and electron beam energies become achievable.

This work was supported by the Institute for Basic Science grant (IBS-R038-D1).

References

- [1] A. Di Piazza, et al. Rev. Mod. Phys. 84, 1177-1228 (2012).
- [2] Yoon, Jin Woo, et al. *Optica* 8.5, 630-635 (2021).
- [3] M. Mirzaie et al. Sci. Rep. 5, 14659 (2015).
- [4] M. Mirzaie et al. Nat. Photon. 18, 1212-1217 (2024).