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Turbulent transport significantly impacts the performance 
of stellarator magnetic confinement devices. For example, 
in the Wendelstein 7-X (W7-X) device, the ion-
temperature-gradient mode (ITG) is believed to limit the 
achievable ion temperature in electron-cyclotron-
resonance-heated plasmas [1]. To understand and predict 
turbulent transport in stellarators, many existing 
gyrokinetic and fluid codes (GTC, GENE, BOUT++, etc.) 
have been equipped with the capability to simulate 
turbulence in stellarators. New codes are also being 
developed. For example, the GPU-based gyrokinetic code 
GX has been incorporated into the stellarator optimization 
codes DESC and SIMSOPT, as well as the transport solver 
T3D to predict the plasma profile evolution in stellarators. 
 
While significant efforts have been made on the numerical 
front, theoretical understanding of turbulence in 
stellarator geometries is still not fully explored. It is well 
known that turbulence is anisotropic in magnetic 
confinement devices, 𝑙𝑙∥ ≫ 𝑙𝑙⊥ , where 𝑙𝑙∥  ( 𝑙𝑙⊥ ) is the 
characteristic wavelength along (across) the magnetic 
fields. Therefore, the fluctuating electrostatic potential Φ 
can be written as  Φ�(𝜓𝜓,𝛼𝛼, 𝑙𝑙)𝑒𝑒𝑖𝑖𝑖𝑖(𝜓𝜓,𝛼𝛼), which consists of a 
rapidly varying phase factor 𝑒𝑒𝑖𝑖𝑖𝑖  and a slowly varying 
envelope Φ� . Here, 𝜓𝜓 is the flux-surface label, 𝛼𝛼 is the 
field-line label and 𝑙𝑙 is the distance along field lines. In 
stellarators, field lines at different 𝛼𝛼 couple within flux 
surfaces due to non-axisymmetry. This effect has often 
been neglected, but recent simulation results, e.g., from 
global gyrokinetic codes GTC, EUTERPE and GENE-3D, 
have shown that the fluctuation level on flux surfaces can 
be different from local (in 𝛼𝛼) simulations. A careful study 
of this effect is thus desired. 
 
In this work [2], we numerically simulate the linear 
electrostatic ITG eigenmodes in stellarators using the 
global gyrokinetic particle-in-cell code GTC, and present 
a theoretical explanation for the observed mode structures. 
We simulate the precise QA and precise QH 
configurations reported in [3], as well as a W7-X high-
mirror configuration used in [4]. We find that the linear 
eigenmode structures are nonuniform on flux surfaces and 
are localized in 𝛼𝛼 at the downstream direction of the ion 
diamagnetic drift. Based on a simple model from Zocco et 
al. [5] and following the WKB theory of Dewar and 
Glasser [6], we show that the localization can be explained 
from the nonzero imaginary part of 𝑘𝑘𝛼𝛼. Focusing on the 
precise QA configuration, we further demonstrate that a 
localized surface-global eigenmode can be constructed 
from local gyrokinetic codes stella [7] and GX [8], if we 
first solve the local dispersion relation with real 
wavenumbers, and then do an analytic continuation to the 

complex-wavenumber plane. These results suggest that 
the complex-wavenumber spectra from surface-global 
effects are required to understand the linear drift-wave 
eigenmode structures in stellarators. 
 
References 
[1] Nucl. Fusion 61, 116072 (2021). 
[2] arXiv:2506.12948. 
[3] Phys. Rev. Lett. 128, 035001 (2022). 
[4] J. Plasma Phys. 88 905880310 (2022). 
[5] Phys. Plasmas 23, 082516 (2016); 27, 022507 (2020). 
[6] The Physics of Fluids 26, 3038 (1983). 
[7] J. Comput. Phys. 391, 365 (2019). 
[8] J. Plasma Phys. 90, 905900402 (2024). 
 

 
Figure 1. The linear global ITG eigenmode structures at 
toroidal Boozer angle 𝜁𝜁 = 0. Lengths are normalized by 
an averaged major radius 𝑅𝑅0 of each configuration. 
 

 
 
Figure 2. The same eigenmode structures but in field-line 
following coordinates (𝛼𝛼,𝜃𝜃) . The mode localization 
becomes more pronounced at a smaller 𝜌𝜌∗ = 𝜌𝜌𝑖𝑖/𝑎𝑎. 

 


