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Neural network (NN) surrogate models are widely 
used for simulating turbulent transport models like TGLF 
[1], but they typically require extensive datasets, leading 
to larger model sizes, longer training times, and a lack of 
uncertainty quantification. To address these limitations, 
we explore Gaussian Process Regression (GPR), a 
nonparametric Bayesian method that provides 
uncertainty estimates and performs well in small-data 
regimes. The predictive performance and uncertainty 
estimates of GPR heavily depend on the kernel choice, 
which defines input space similarity and acts as a prior 
for the model function. While data characteristics often 
guide kernel selection, TGLF surrogate construction 
involves high-dimensional, complex input-output 
relationships, making a priori kernel determination 
challenging. 

The connection between deep NNs and GPs, 
established via the central limit theorem, has enabled 
closed-form expressions for kernels corresponding to 
error-function (ERF) and ReLU activations. These form 
the basis of Neural-Net-induced Gaussian Processes 
(NNGPs) [2]. NNGPs allow for varying weight variances 
across input neuron connections and separate tuning of 
weight/bias variances per layer, parameterizing 
layer-specific scale factors. The high expressivity of 
NNGPs, often realized through deep ReLU/ERF kernels, 
arises from a hierarchical, layer-by-layer iterative 
construction. Adopting these kernels allows GPR to 
approximate deep learning behavior while retaining 
probabilistic interpretability. 

Scalability is another challenge for GP-based 
surrogates. Applying GPR to large datasets is 
computationally prohibitive due to memory and 
computational costs. Stochastic Variational Gaussian 
Process (SVGP) [3,4] offers a scalable alternative by 
introducing a small number of inducing points through 
which all predictions are made, significantly reducing 
these costs.  

To develop our GP-based surrogate models, we 
created “dgpr”, a custom GPR library in Python using 
JAX for automatic differentiation and GPU acceleration. 
It supports full GP and SVGP with various kernels, 
including deep kernels. It also supports the Intrinsic 
Coregionalization Model for multi-output regression. It 
shows good agreement in benchmarks against GPy and 
GPflow. From several numerical tests, it was 
demonstrated that deep kernels are capable of accurately 
capturing anisotropic structure without prior 
consideration tailored to the input data, even when the 
underlying function exhibits distinct behaviors across 
input dimensions. This property makes them particularly 
well-suited for surrogate modeling tasks where the 

characteristics of the input parameters vary significantly 
across dimensions. 

From 147,529 data points generated by GOTRESS 
[1] with TGLF simulations, 3,000 points were randomly 
sampled and then split into training (2,700 points) and 
test (300 points) sets. Figure 1 shows the temperature 
profile prediction results of GOTRESS simulations using 
SVGP surrogates (trained on 2,700 points with deep 
ReLU, Matérn-3/2, and Matérn-5/2 kernels) compared to 
an NN surrogate and the original TGLF model. All 
surrogate models successfully reproduced TGLF's 
temperature profiles. A simulation was also conducted 
using a reduced training dataset of 40 points. With only 
40 data points, prediction becomes feasible even with a 
full GP, without the need for SVGP. Remarkably, the full 
GP and SVGP surrogate models with deep ReLU 
kernel still accurately reproduced temperature profiles in 
GOTRESS simulations, whereas the NN surrogate failed 
due to the shortage of the data points. This demonstrates 
GPR's effectiveness, particularly with deep kernels, for 
developing robust surrogates in low-data regimes for 
complex physical simulations. 

 

 
Figure 1. (a) Electron and (b) ion temperature profile 
predictions using GOTRESS with experimental 
observations. The results obtained using SVGP surrogate 
models with three different kernels and the NN surrogate 
model trained on 2,700 points are compared with those 
obtained using TGLF. The boundary condition is set at 
𝜌 = 0.8. 
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