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The prediction and understanding of plasma dynamics 
across varying plasma regimes remains a fundamental 
challenge in fusion research [1]. While traditional 
approaches require expensive simulations for each 
parameter configuration, we present a novel application 
of continuous Koopman Neural Operators (cKNO) to 
learn the evolution operators parameterized by the 
collision parameter ν (which characterizes the plasma's 
collisional transport), enabling interpolation between 
different plasma behaviors without additional 
simulations. 
 
We utilize 3D data generated from Braginskii model 
simulations [2], where the magnetic geometry and other 
plasma parameters are fixed, and only the collision 
parameter ν is varied. Unlike standard Koopman 
operators that learn fixed time-evolution mappings, our 
approach learns a continuous family of operators K(ν), 
enabling prediction of plasma evolution for unseen 
collision parameter values within the learned parameter 
space [3]. 
 
Our cKNO architecture extends the standard formulation 
by introducing a collision parameter encoder that 
modulates the spectral evolution operator. The model 
takes as input: (1) the initial plasma state u_0, (2) the 
continuous parameter ν, and outputs the evolved state 
u(t). The key innovation is that the Fourier-domain 
operator continuously varies with ν, allowing smooth 
interpolation between learned dynamics while preserving 
the Koopman framework's linear evolution structure [4].  
 
To formalize the method, we consider a nonlinear 
dynamical system of the form: 

 
𝜕!𝑡𝑢 = 𝐹(𝑢; , 𝜈), (1) 

 
where u is the high-dimensional plasma state and ν is the 
collision parameter. The Koopman operator 𝒦"(𝜈) 
evolves the system linearly in an appropriate observable 
space such that 

 
𝑢(𝑡 + 𝜏) = 𝒦!𝜏(𝜈), 𝑢(𝑡). (2) 

 
In practice we approximate this evolution in a latent 

space using an encoder-decoder architecture. The 
encoder ℰ maps the input state 𝑢(𝑡) ∈ 𝑅# to a latent 
representation 𝑧(𝑡) = ℰ(𝑢(𝑡)) ∈ 𝑅$, where 𝑑 ≪ 𝑛. The 
decoder 𝒟  reconstructs the physical state as 𝑢̂(𝑡) =
𝒟(𝑧(𝑡)). Time evolution in the latent space is governed 
by a ν-parameterized Koopman operator 𝐾(𝜈) ∈ 𝐶$×$, 
which is treated as a continuous function of the collision 
parameter. The latent dynamics obey 
 

𝑑𝑧
𝑑𝑡 = 𝐾(𝜈)𝑧, (3) 

 
and this ODE is integrated using a differentiable ODE 
solver such as the midpoint or Runge-Kutta method to 
yield 𝑧(𝑡) . This formulation allows end-to-end 
backpropagation of errors during training through both 
the encoder-decoder and the time evolution process.  

 
The ν-conditioned continuous Koopman Neural Operator 
(cKNO) is trained on a discrete set of collisionality 
parameters and validated on unseen intermediate values. 
By minimizing reconstruction loss between predicted 
and simulated states over multiple time steps, the model 
learns to generalize smoothly across ν. This learned 
operator manifold not only enables fast, accurate 
simulations [5] - significantly faster than traditional 
solvers - but also offers insight into bifurcations and 
critical thresholds. 
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