

Kolmogorov-like turbulence phenomenology in magnetohydrodynamics

Mahendra K. Verma^{1,2}, Manthan Verma¹, Abhishek K. Jha¹

Department of Physics, IIT Kanpur

²Kotak School of Sustainability, IIT Kanpur

e-mail (speaker): mkv@iitk.ac.in

Understanding the scaling and intermittency in magnetohydrodynamic (MHD) turbulence remains a central challenge in plasma physics. Competing theories predict different spectral scalings: the Iroshnikov–Kraichnan (IK) model suggests a $k^{-3/2}$ spectrum, while Kolmogorov-like models by Marsch^[1], Goldreich & Sridhar^[2], and Verma et al.^[3] support a $k^{-5/3}$ scaling. To investigate this, we perform high-resolution direct numerical simulations (DNS) using our GPU-accelerated pseudo-spectral solver, AITHON, achieving resolutions up to 1024^3 in 3D and 8192^2 in 2D. Our results show that the energy spectra of the Elsasser fields (z^+, z^-) follow a Kolmogorov-like scaling, with asymmetry in $E^+(k) \neq E^-(k)$ under unequal energy injection (ϵ^+, ϵ^-) , in agreement with Marsch's^[1] model.

In addition, the third-order structure functions $S_3^{\pm}(l)$ follows the predictions of Politano and Pouquet^[4], which is consistent with Kolmogorov-like phenomenology. In addition, the intermittency exponents too follow scaling based on Kolmogorov theory. These results provide strong evidence for Kolmogorov-like scaling for MHD turbulence.

References:

- [1] Marsch, "Turbulence in the solar wind", in *Reviews in Modren Astronomy*, p.145-156 (1991)
- [2] Goldreich and Sridhar, The Astrophysical Journal 438, 763-65 (1995)
- [3] Verma et al, Journal of Geophysicsl Research: Space Physics 101, 21619-625 (1996)
- [4] H. Politano and A. Pouquet, Geophys. Res. Lett. 25, 273 (1998).

Figure 1. Numerical results of MHD turbulence simulations on 8192² and 1024³ grids for $\epsilon_{\rm inj}^+/\epsilon_{\rm inj}^-=1$ and 3. (a,b,c,d): Plots of the normalized energy spectra $E^\pm(k)k^\alpha$, $\alpha=5/3$ (thick lines) and 3/2 (thin lines). (e,f,g,h): Plots of the energy fluxes $\Pi^\pm(k)$ for the above. (i,j,k,l): Plots of the structure function $-S_3^\pm(l)$ vs l. (m,n,o,p): Plots of the intermittency exponents ζ_p^\pm , which are closer to She-Leveque extension based on Kolmogorov theory (solid lines). In all curves **blue** and **red** colors denotes z^+ and z^- fields respectively.