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 The so-called reference scenario 2 [1] of the JT-60SA 

tokamak is studied with gyrokinetic GENE simulations. 

The scenario features 41 MW of combined neutral beam 

heating and electron cyclotron heating, and a high 

predicted ratio β of the plasma kinetic to magnetic 

pressure.  

Profiles produced by the ACCOME and TOPICS 

predictive transport modeling [2] were used as an input 

for GENE. The local linear and nonlinear modeling was 

carried out mainly at ρtor=0.5, where ρtor corresponds to 

the square root of the normalized toroidal flux. 

Simulations with two (electrons and deuterium), three 

(with addition of carbon) and four (with addition of the 

fast deuterium) kinetic species were carried out. 

Electromagnetic effects were included in simulations by 

considering both fluctuations of perpendicular and 

parallel magnetic field. 

Linear simulations identified the Ion Temperature 

Gradient (ITG) mode, Micro Tearing Mode (MTM) and 

Electron Temperature Gradient (ETG) modes as most 

unstable at various scales (shown in Figure 1). The high 

frequency fast ion mode previously observed in 

reference scenario 1 simulations [3] was also found in 

linear simulations and identified as Toroidal Alfven 

Eigenmode (TEA).  

Similar to simulations for the reference scenario 1 [3], 

TAE was found to significantly complicate nonlinear 

simulations causing oscillations of the heat flux. 

Parameters of the fast ion profile were modified to 

stabilize the mode in nonlinear simulations and obtain 

converged values for the heat flux. Unlike the scenario 1, 

where heat flux was found to be much lower than heating 

power at ρtor=0.5, in this case turbulent heat flux at 

ρtor=0.5 was found to be three times larger than the total 

heating power of 41 MW. A small (10%) decrease of 

electron and ion temperature gradients was sufficient to 

recover expected heat fluxes. 

To address discrepancy with scenario 1, linear and 

nonlinear simulations at additional radial locations in the 

core (ρtor=0.3-0.7) were carried out, in particular showing 

similar results at ρtor=0.6 to those published in [3]. Linear 

simulations demonstrated highest growth rates at ρtor=0.5, 

while nonlinear simulations at every other location 

resulted in the heat flux much lower than heating power. 

Nonlinear heat fluxes are shown in Figure 2. 

The heat flux was found to be sensitive to small 

changes of the input gradients of both electron and ion 

temperature, suggesting a mix of ITG and Trapped 

Electron Mode.  

Overall, the modeling results suggest that the profiles 

produced by the transport modeling are self-consistent in 

terms of the core turbulence and in fact a steeper gradient 

could be possible at most core radial locations. 
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Figure 1. The growth rate (top) and frequency (bottom) of the fastest 

growing mode depending on the binormal wavenumber. Positive 

frequency corresponds to the ion diamagnetic drift direction. 

Different lines correspond to different number of kinetic species used 

in the GENE simulation. 

Figure 2. Total heat flux depending on the radial position of the 

flux-tube center. Errorbars correspond to the standard deviation of 

the heat flux in the stationary phase. The dashed black line 

corresponds to the total heating power. 
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