9th Asia-Pacific Conference on Plasma Physics, 21-26 Sep, 2025 at Fukuoka

Magnetic Reconnection Physics for Low and High Guide Fields

C. Z. Cheng^{1,2}, Y. Ono¹, H. Tanabe¹, M. Inomoto¹, S. Inoue³, R. Horiuchi⁴, S. Usami⁴

Department of Advanced Energy, University of Tokyo

Princeton Plasma Physics Laboratory, Princeton University

National Institutes for Quantum and Radiological Science and Technology

National Institute for Fusion Science

e-mail: frankcheng@edu.k.u-tokyo.ac.jp

Magnetic reconnection is an important physical process to convert magnetic energy into plasma energy. In experiments, space observations and PIC simulations [e.g., 1-7], both ion and electron energy gains are proportional to B_p^2/n , where B_p is the reconnecting poloidal magnetic field in the x-y plane and n is the plasma density. The results are not sensitive to the guide magnetic field \vec{B}_z strength although the particle dynamics are quite different for low $(B_z \ll B_p)$ and high $(B_z \gg B_p)$ guide field cases.

For $B_{z} \ll B_{p}$, the merging magnetic field \vec{B}_{p} is mainly in the x-direction and the merging direction is in the y-direction. With neutral sheet located at y = 0 ions are unmagnetized in the ion orbit meandering region $(|y| \le \ell_{mi})$ where ions are accelerated by the reconnection driving \vec{E}_z . Similarly, electrons are unmagnetized in the electron orbit meandering region $(|y| \le \ell_{me} < \ell_{mi})$. Thus, charge separation and an electrostatic potential well Φ and large electrostatic E-field \vec{E}_{es} (>> $|\vec{E}_z|$) in the y-direction are formed in the $|y| \le \ell_{mi}$ region. In the $\ell_{me} \le |y| \le \ell_{mi}$ region electrons are still magnetized and have a large $\vec{V}_E = c\vec{E}_{es} \times \vec{B}_p / B^2$ drift velocity in the z-direction. The $\vec{v}_z \times \vec{B}_y$ force rotates \vec{v}_z toward the outflow direction. The ion outflow velocity \vec{V}_{io} reaches the poloidal Alfven velocity $V_{Ap} \equiv B_p / (4\pi n_i m_i)^{1/2}$, and the electron outflow velocity reaches a super-Alfvenic velocity $V_{eo} >> V_{Ap}$. The analytic theory [5] shows that the potential well drop is $\Delta \Phi \approx (B_p^2 / 4\pi n_{in} e)(1 + \ell_{me} / \Delta)\Lambda$ where $\Delta = B_p / 4\pi n_{in}e$, $\ell_{mi} / \Delta = (m_i v_i / m_e c)\omega_{pe}^2 / \omega_{ce}^2$, $\Lambda = e^{(\ell_{mi} - \ell_{me})/\Delta} \Gamma / 2$, $\Gamma = n_0 / n_{in} - 1 > 0$, n_0 is the averaged ion density in the $\ell_{me} \le |y| \le \ell_{mi}$ region, and n_{in} is the ion density at $|y| = \ell_{mi}$. Note that $0.2 < (1 + \ell_{me}/\Delta)\Lambda < 0.5$ for most plasma parameters. Then ion energy gain from the potential drop is $U_i \approx e\Delta\Phi$. The electron energy gain in the current sheet is $U_e = (B_p^2 / 4\pi n_{in}) S_{evz}^2 (\ell_{me} / \Delta) \Lambda$, where S_{evz} is the average electron velocity enhancement due to E_z acceleration in the $|y| \le \ell_{me}$ region over $\vec{V}_{Ez}(y = \ell_{me})$.

For $B_z >> B_p$, both electrons and ions are magnetized

in the entire reconnection region. Near the field line separatrices the parallel E-field $E_{\parallel} = (E_z B_z + E_p B_p)/B \neq 0$ because $|E_p B_p|$ becomes smaller and $E_z B_z$ is approximately uniformly constant. Particles are accelerated by \vec{E}_{\shortparallel} to gain large parallel flow velocities with $|\vec{V}_{e\parallel}| >> |\vec{V}_{i\parallel}| \sim |\vec{V}_{i\perp}|, |\vec{V}_{e\perp}|$. The flow velocity along \vec{B}_p for electrons is given by $\vec{V}_{ep} \approx V_{e\parallel} \vec{B}_p / B$ except near the X-line, and $\vec{V}_{ip} \approx (\vec{V}_{i\perp} \bullet \vec{B}_p) \vec{B}_p / B_p^2$ for ions. For $B_z > 0$ and $E_z < 0$, $E_{\parallel} < 0$, $V_{e\parallel} > 0$ and in the poloidal plane electrons flow mainly along \vec{B}_n to accumulate density and net negative charge and produce negative Φ on the \vec{B}_{p} pointing side. On the anti- \vec{B}_{p} side the net charge and Φ are positive. Thus, a quadrupolar potential structure is formed around 4 separatrix arm regions. An electrostatic E-field $E_{\it esp}$ is produced along \vec{B}_{p} . Because $\left| E_{esp} \right|$ on the $\Phi < 0$ side is larger than $|E_{esp}|$ on the $\Phi > 0$ side, thus $E_0 \approx 0$ on the $\Phi < 0$ side and E_{\parallel} is finite on the $\Phi > 0$ side. Thus, E_{\parallel} is finite around the $\Phi > 0$ pair of separatrix arms and $E_{\parallel} \approx 0$ around the $\Phi < 0$ pair of separatrix arms. A larger electric field $\vec{E}_{es,y} \approx E_y \hat{e}_y$ across the downstream region is produced, and the ion outflow velocity is given by $V_x \approx cE_y/B_z$. We obtain $\Phi^2 \sim T_iB_p^2/4\pi n_{in}e^2$ where T_i is the ion temperature. If Φ varies mainly across sheet width Δy $E_v \approx (T_i B_p^2 / 4\pi n_0 e^2)^{1/2} / \Delta y$, and $V_x \approx (\rho_i / \Delta y) V_{Ap}$ where ρ_i is the ion gyroradius, and the ion kinetic energy is $U_i \approx (\rho_i / \Delta y)^2 B_p^2 / 8\pi n_{in}$. If the current sheet width Δy is compressed to ρ_i , then $U_i \approx B_n^2 / 8\pi n_m$. The above results are consistent with the experimental results [1-4].

References

- [1] Y. Ono et al., Plasma Phys. Control. Fusion 67, 055018 (2025).
- [2] Y. Ono et al., Phys. Plasmas 22, 055708 (2015).
- [3] H. Tanabe et al., Nucl. Fusion 61, 106027 (2021)
- [4] H. Tanabe et al., Phys. Rev. Lett. 115, 215004 (2015)
- [5] C. Z. Cheng *et al.*, Phys. Plasmas 28, 072101 (2021)
- [6] C. Z. Cheng et al., Phys. Plasmas 22, 101205 (2015)
- [7] S. Inoue et al., Nucl. Fusion 55, 083014 (2017)