Computational and experimental analysis of H-atom-assisted non-thermal conversion of methane-hydrogen plasma to acetylene Swapnali Khamaru¹, Takashi Yumura¹, Akio Sanpei¹, Yasuro Fuse¹, Xue Chu¹ and Haruhiko Himura¹ ¹ Kyoto Institute of Technology, Kyoto, Japan e-mail (speaker): khamaru@kit.ac.jp Methane (CH₄) is available in large quantities from natural gas. It is of practical importance for the synthesis of hydrocarbons such as acetylene (C₂H₂) and ethylene (C₂H₄) [1]. Traditional oxidative methods for methane conversion often result in undesired CO₂ formation [2]. Plasma pyrolysis, though effective in producing C₂H₂ at high temperatures (~3000 °C) [3], suffers from low energy efficiency and carbon deposition. Alternatively, non-equilibrium plasma reactors, utilizing microwave or RF discharges, enable vibrational excitation of CH₄, which promotes dissociation at lower temperatures and improved energy efficiency [1]. In this study [4], we explore carbon-neutral pathways for CH₄ to C₂H₂ conversion using a chemical dynamics approach. Reaction mechanisms were analyzed via quantum chemistry, comparing two distinct pathways one in the presence of abundant H atoms (Fig. 1) and another under H-deficient conditions. DFT (B3LYP) calculations were employed to identify local minima and transition states. The pathway involving abundant H atoms was found to exhibit a more stable potential energy surface (PES) for C₂H₂ formation. Furthermore, relative species concentrations were estimated using the Boltzmann distribution function [5], revealing that spontaneous CH₄ conversion and selective C₂H₂ production occur efficiently at lower energy ranges (< 14 eV) when H atoms are abundant (Fig 2). Surface wave plasma experiments with CH₄-H₂ mixed-gas were performed, where high specific energy input (SEI) is applied for enhanced C₂H₂ yields. The computational findings qualitatively support the experimental results. The transient nature of plasma intermediates $(10^{-9}-10^{-6}\,\mathrm{s})$ poses challenges for direct validation. Further studies are ongoing to incorporate advanced kinetic modeling. Additionally, experimental determination of critical plasma parameters such as electron and gas temperatures would further strengthen the correlation between simulation and observation. This study contributes to the development of sustainable, lowenergy routes for hydrocarbon synthesis via nonequilibrium plasma processes. ## References - [1] T. Minea et al., Plasma Process Polymers 15, e1800087 (2018) - [2] LT. Hsieh et al., Plasma Chem. Plasma Process. 18, 215-239 (1998) - [3] J. R. Fincke et al., Plasma Chem. Plasma Process. 22, 107 (2002) - [4] S. Khamaru et al., "H-atom-assisted reactions in non-thermal conversion of CH₄-H₂ plasma to C₂H₂" (under review) - [5] Atkins, P.; de Paula, J.; Keeler, J. Atkins' Physical Chemistry; Oxford University Press, (2023) ## Scheme 1 Figure 1. Scheme 1: CH₄ activation by an H atom Figure 2. Thermodynamic energy dependency of the modified relative concentration of hydrocarbons formed in Scheme 1