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The "sawtooth" instability, a periodic internal collapse 

phenomenon observed in all tokamaks [1], is 

characterized by a gradual peaking of the electron 

temperature profile followed by rapid flattening in the 

central plasma. This rapid flattening manifests as a 

temperature collapse inside the inversion radius  (𝑟𝑠 ) 

and a subsequent increase between (𝑟𝑠) and the mixing 

radius 𝑟𝑚𝑖𝑥), with minimal perturbations beyond (𝑟𝑚𝑖𝑥) 

[1]. Sawtooth collapse is an important mechanism for 

preventing helium ash accumulation in fusion plasmas, 

but it can also generate harmful instabilities [2, 3] that 

pose significant risks to fusion devices. 

Sawtooth collapse is widely understood to result from a 

reconnection process occurring on the q=1 surface. This 

process leads to the mixing of magnetic flux inside the 

q=1 surface with flux in the region between the q=1 

surface and the mixing surface. 

Previous experimental studies have investigated 

sawtooth behavior in detail using Soft X-Ray emission 

arrays (SXR) [4], Electron Cyclotron Emission (Imaging) 

systems (ECE(I)) [5], and Thomson Scattering systems 

(TS) [6]. Notably, ECEI provides direct 2D 

measurements of electron temperature perturbations 

across a cross-section, revealing features such as the 

X-point [7] and m/n=1/1 kink-like motion of the hot core 

[8]. These observations are consistent with the 

reconnection model description. 

Despite these insights, experimental research on electron 

density perturbations across the entire cross-section 

during sawtooth collapse remains limited. Reflectometry 

observations in Tore-Supra revealed that the density 

evolution is decoupled from the temperature evolution, 

forming a distinctive crescent structure after collapse. 

This structure was attributed to fast electric drift velocity 

jets generated at the reconnection layer in rotating 

plasma. XTOR-2F code simulations produced a similar 

post-collapse density structure [9]. 

The 17-channel polarimeter-interferometer on J-TEXT 

revealed that during sawtooth collapse, density increases 

only occur locally within a specific poloidal direction in 

the region between 𝑟𝑠  and 𝑟𝑚𝑖𝑥 . Furthermore, this 

direction is consistently opposite (high-field side or 

low-field side) to the dense core location of the 1/1 

precursor. This asymmetry leads to a ~6% asymmetry in 

the density profile after collapse. In contrast, the 

temperature perturbation remains poloidally symmetric 

during collapse [10]. 

We propose that because the timescale of parallel 

diffusion is comparable to that of the sawtooth collapse, 

the interaction between evolving magnetic fields and 

parallel transport processes generates a poloidal particle 

flow along the magnetic field from the X-point region to 

the O-point region. The magnitude of this flow is 

comparable to parallel particle diffusion. Consequently, 

electron density increases become concentrated near the 

O-point. In contrast, the larger parallel heat diffusion 

causes electron temperature and density perturbations to 

decouple. 

These findings suggest that since the particle parallel 

diffusion timescale aligns with the magnetic surface 

evolution timescale, such coupling effects should be 

incorporated into sawtooth collapse models. 

Understanding particle motion will be crucial for 

predicting profile relaxation during sawtooth collapse in 

future reactors with higher core densities. 
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