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Shocks and discontinuities are ubiquitous in laboratory, 

space, and astrophysical plasmas, playing crucial roles in 

various phenomena. In magnetohydrodynamics (MHD), a 

system that describes the macroscopic dynamics of 

plasmas, such discontinuous structures, which are much 

more complicated than those in neutral hydrodynamics, 

can naturally form. Capturing these complex MHD shocks 

and discontinuities sharply and accurately without 

numerical oscillations has long been a central challenge in 

computational MHD. 

One of the most promising so-called “shock capturing” 

approaches is the class of Godunov-type methods, also 

known as Riemann solvers. In Riemann solvers, the 

numerical fluxes for the conservation laws are evaluated 

at cell interfaces from an approximate solution of the 

Riemann problem, which is an initial value problem 

whose initial conditions consist of two constant states 

separated by a single discontinuity. Therefore, the quality 

of the numerical solution to the conservation laws has a 

direct and significant impact on the accuracy of the 

approximate solution of the Riemann problem. 

  Over the decades, several Riemann solvers have been 

proposed for MHD. The Roe solver [1], which uses the 

exact solution of the locally linearized Riemann problem 

at the cell interfaces, has been applied to MHD [2]. The 

Roe solver can sharply resolve shocks and discontinuities 

by taking into account all characteristic waves. However, 

especially in MHD, it suffers from the computational 

expense associated with highly complicated eigenvectors 

and may fail to preserve the positivity of density and 

pressure. 

The Harten-Lax-van Leer (HLL) solver [3], another 

simple solver, approximates the internal state in the 

Riemann fan between the two outermost waves as a single 

constant state. HLL-type solvers are constructed based on 

nonlinear jump conditions and are generally robust. 

However, because the HLL solver neglects the 

intermediate waves within the Riemann fan, it cannot 

sharply resolve discontinuities such as contact and shear 

waves. To overcome these limitations, an epoch-making 

Riemann solver called the HLL-Discontinuities (HLLD) 

solver [4] was proposed. In the HLLD solver, the normal 

velocity inside the Riemann fan is assumed to be constant, 

and multiple intermediate constant states are then 

analytically determined by satisfying the nonlinear jump 

conditions for MHD. While preserving the positivity of 

density and pressure, the HLLD solver, unlike the original 

HLL solver, can exactly resolve isolated contact and 

rotational discontinuities. Thus, the HLLD solver 

achieves high accuracy, robustness, and computational 

efficiency. 

 In the 20 years since the HLLD solver was proposed, 

the HLLD solver has been adopted as the de facto standard 

solver in many open-source MHD codes [5] worldwide, 

significantly contributing to the understanding of various 

phenomena, particularly in space and astrophysical 

plasmas. Although the original HLLD solver was 

designed for fully compressible and non-relativistic MHD, 

its application has been successfully extended to 

isothermal MHD [6], relativistic MHD [7], and MHD with 

Boris correction [8]. Furthermore, the underlying concept 

of the HLLD solver has even been applied beyond MHD, 

including to problems in elastic-plastic solid mechanics 

[9]. 

  Despite its widespread use and various extensions, the 

HLLD solver still faces challenges in extreme parameter 

regimes. At very low Mach numbers, it suffers from 

excessive numerical viscosity, as with other Riemann 

solvers. Conversely, in multi-dimensional flows at very 

high Mach numbers, numerical shock instabilities can also 

appear, as is the case with other high-resolution solvers. 

To partly address these issues, an “all-speed” variant of 

the HLLD solver was proposed [10]. Nevertheless, 

achieving accurate solutions for very low-beta MHD 

remains particularly difficult. This difficulty may be 

related to the issue of “energy consistency” discussed in 

[11]. Developing an “all-beta” variant of the HLLD solver 

that remains robust across the full range of plasma beta is 

an important open problem and one of the promising 

directions for future research. 
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