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  The Fokker-Planck collision term to include a uniform 

magnetic field for homogeneous plasma is derived which 

has the similar form as the case of no magnetic field as 
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but with different Fokker-Planck coefficients ⟨∆𝐕α⟩  and 

⟨∆𝐕α∆𝐕α⟩ , which including the magnetic field. The 

coefficients are calculated explicitly within the binary 

collision model, which are free from infinite sums of 

Bessel functions.  

The Fokker-Planck approach is employed to derive the 

kinetic equation for spatially uniform magnetized plasmas. 

The magnetized Fokker-Planck collision term can be 

manipulated into the Landau form. 

By using the fluctuating electrostatic field for quiescent 

plasmas, the magnetized Fokker-Planck coefficients are 

calculated explicitly based on the wave theory which 

including the collective effects in a proper manner. The 

magnetized Balescu-Lenard collision term is obtained as 
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where the dielectric response function is 
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The magnetized Balescu-Lenard equation is identical to 

the results derived by using the BBGKY hierarchy of 

equations and the quasilinear method. 

The generalized Balescu-Lenard equation is derived 

from Klimontovich equation for strongly magnetized 

inhomogeneous plasmas with a collision term 

incorporating simultaneously the collective interactions, 

effects of magnetic field and distribution function 

inhomogeneity, and nonlocality of the collision process by 

using the quasilinear approach.  

The kinetic equation is 
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Where the local part of collision term is 
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Meanwhile the nonlocal part of collision term is 

 

 

 
 

Subsequently, the particle transport process across 

magnetic field in strongly magnetized plasmas is 

investigated by using the generalized Balescu-Lenard 

equation derived above. 
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