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Three-dimensional (3D) fields in tokamak are primarily 
generated by Resonant Magnetic Perturbation (RMP) 
coils, which produce magnetic fields with small 
intentional toroidal asymmetries. When a toroidally 
symmetric tokamak plasma is subjected to these 
toroidally asymmetric magnetic perturbations, a new 
equilibrium emerges. This equilibrium incorporates 
perturbed currents, magnetic fields, pressures, and 
displacements, representing the plasma's response to the 
applied three-dimensional fields. Extensive experiments 
have demonstrated that three-dimensional magnetic 
perturbations can induce significant impacts on transport 
and energy confinement within tokamaks. Concurrently, 
they lead to substantial modifications in particle and heat 
flux distributions onto plasma-facing components such 
as the vacuum vessel wall and divertor targets. Therefore, 
three-dimensional fields phenomena are closely 
associated with plasma confinement and stability in 
tokamak. The plasma response plays a crucial role in 
understanding the underlying physical mechanisms 
behind three-dimensional fields phenomena, making the 
modeling of plasma responses under three-dimensional 
external magnetic fields particularly significant [1]. 
In this work, a dataset was constructed based on the 
EAST experimental database, incorporating supervised 
learning of 𝑞𝑞95, 𝛽𝛽𝑁𝑁, 𝑛𝑛𝑒𝑒, 𝑙𝑙𝑖𝑖, 𝐵𝐵𝑡𝑡 , RMP signals, and 
plasma response. Two response prediction models were 
trained using deep learning neural networks [2-4]. Both 
models achieved amplitude prediction scores exceeding 
0.85 (on a scale from 0 to 1) and phase prediction scores 
exceeding 0.9 (on a scale from 0 to 1) when compared to 
experimental measurements. The response model 
successfully predicts the response of the shot 127087, as 
shown in Figure 2. Additionally, the real-time model, 
leveraging the fast computational capabilities of the 
neural network, can meet the demands of real-time 
experimental predictions. The physical analysis model 
directly establishes a mapping between the input 
physical signals and the plasma response, enabling the 
analysis of the response's dependence on plasma state 
parameters through experimental data. 
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Figure 1. The RMP system on the EAST tokamak 
 
 

 
Figure 2. The input signals and prediction results of 
physical analysis model based deep learning 
 

 


