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Computationally costly models, with a selection of 

uncertain input parameters, are ubiquitous in science, 

including magnetic confinement fusion research (MCF) 

[1 – 4]. Due to the input uncertainties, multiple forward 

passes are typically required in model validation to 

quantify the input parameter distributions that best 

reproduce the experimental observations [5]. This 

inverse uncertainty quantification need represents one of 

the key challenges in model validation and must be done 

algorithmically in large-scale validation workflows. 

    Simulation-based inference (SBI) is a rapidly 

developing field aiming to address these inference 

challenges related to complex, high-fidelity simulators in 

science [6]. While data-efficient inverse inference 

workflows have been demonstrated in model validation 

applications within MCF [5, 7 – 9], a large-scale 

adoption of these methods in model validation activities 

in MCF has not emerged yet. One of the key entry 

barriers is the software infrastructure that is needed for 

large-scale applications. In addition to the SBI 

algorithms, a large-scale workflow requires solutions for 

overall task orchestration on high-performance 

computing (HPC) platforms, management of the 

simulation database, and for processing failed 

simulations automatically within the workflow. However, 

these requirements align with those needed for data 

generation for general machine learning surrogate model 

development for computationally demanding models [10 

– 12]. Therefore, it is foreseen that developing fast 

surrogate models for a very broad range of applications 

and large-scale validation of computational models can 

be established within a unified, holistic workflow that 

advances both objectives simultaneously. To proceed 

towards this vision, a scalable SBI framework is being 

developed, building on top of Enchanted-surrogates, 

originally designed for simulation data generation for 

surrogate models [13].  

    The developed framework is applied for parameter 

inference of runaway electron (RE) transport simulations 

of JET Pulse Number (JPN) 95135 with argon induced 

disruption and RE beam. The study is initialized by 

simulating the current quench and early RE plateau with 

DREAM assuming no radial RE transport with 

background electron temperature, argon assimilation 

fraction, and RE seed magnitude optimized with 

Bayesian Optimization (BO) to reproduce the 

experimentally measured plasma current, similar to [5]. 

At the end of this initialization simulation, the synthetic 

synchrotron image, obtained with SOFT [14], is 

qualitatively in agreement with experimental 

observations. Starting from this initialization simulation, 

RE plateau is simulated allowing radial diffusion via the 

Rechester-Rosenbluth model [15]. The transport is 

parameterized through magnetic field fluctuation 

magnitude (δB/B) and radial variation through α and β as 

rα-1e-βr [15]. The established workflow is able to sample 

through several hundred kinetic DREAM simulations, 

post-processed with SOFT, while using BO to efficiently 

find a solution that aligns significantly better with the 

experimentally observed synchrotron image at the end of 

the simulated time window than a simulation without RE 

transport would. Further application of the framework in 

model validation and future perspectives of enabling 

large-scale SBI in MCF studies will be discussed.      
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