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Deep learning based models have become power tools for
modeling the time evolution of tokamak plasmas, both in 
terms of surrogating/emulating physics models[1] as well
as learning from experimental data [2]. Some deep 
learning models, while being fast and potentially very 
accurate, have the disadvantage of being black-boxes that 
have low interpretability and struggle to generalise 
beyond the training data [3]. Generative models, a subset 
of deep learning models, based on probabilistic 
variational autoencoders (VAEs) [4], seek to learn a 
representation of the underlying system, here the 
dynamic evolution of a tokamak plasma. The benefit of 
learning a representation via a probablistic generative 
model is that the model yields an interpretable 
representation that, ideally, encodes physically 
meaningful information (Figure 1), and provides 
uncertainty intervals over the predictions.  

To this end, VAEs have been trained on experimental 
data to predict kinetic profiles of the JET and AUG 
tokamaks. By introducing semi-supervision to the latent 
variables models, an the learned latent representation is 

established to additionally map machine parameters to 
profiles. The models have been investigated for uses in 
the prediction of steady-state edge conditions [5], 
machine size scalings [6], and time evolution of electron 
kinetic profiles [7] (Figure 2). 

Ongoing work is focused on exploring including physics 
simulations into the representation, alongside the 
experimental data. The physics simulations are focused 
around core transport (TGLF) and ideal-MHD stability 
(MISHKA) and reduced pedestal transport models. 
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Figure  2: The time traces of  (botom) the ratio  of
total power injected to the Martin L-H scaling for
AUG #34814  and (top) the learned representation
encoded  by  the  latent  variable  model.  The
horizontal  line (vertical  on colorbar)  marks unity
for PTOT/PLH, thus an inferred onset  of H-mode
(Martin  scaling).  Although  the  network  has  been
trained for profile prediction, the advantage of the
additional representation learning objectives leads
to an interpretable model.  

Figure  1:  Graphical  representation  of  the  generative
model. Electron profiles are encoded to a representation
s via a convolution neural network. The representation s
is pushed forward in time via a multi-layered perceptron.

The  latent  representation  can  be  decoded  into  profiles
and  other  observables  via  another  convolution  neural
network. 


