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The mixing of the vorticity field in two-dimensional 

turbulence is considered a key process in the formation 

of large, coherent structures. The degree of the mixing 

can be quantified by using the mixing entropy, which is 

defined in the framework of statistical mechanics (e.g., 

[1]). If mixing is ideal, the vorticity field evolves 

towards the statistical equilibrium which is defined as the 

maximizer of the entropy. However, it is known that the 

dynamics governed by the Euler equation does not 

necessarily reach the statistical equilibrium (e.g., [2]).  

 In systems in which the vorticity or the potential 

vorticity is materially conserved, such as the two-

dimensional Euler equation or the Charney-Hasegawa-

Mima equation, mixing occurs through vorticity 

filamentation. We recently showed that the negative 

curvature of the flow domain accelerates the elongation 

of a material line in the fluid [3]. This suggests that the 

Riemannian metric may influence the relaxation of the 

vorticity field towards the statistical equilibrium.  

 In this study, we test the relationship between the 

curvature of the domain and mixing of the vorticity field 

by numerical calculations. We consider a doubly 2π-

periodic torus 𝑀 = (𝐑/2𝜋𝐙)2 equipped with a time-

periodic Riemannian metric  

𝑔(𝑡) = (
γ(𝑥, 𝑦; 𝑡) 0

0 γ(𝑥, 𝑦; 𝑡)−1
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where 𝑥 and 𝑦 are the standard coordinates of the 

torus, and γ is a positive function. Since det 𝑔(𝑡) = 1, 
the deformation preserves the total area of the torus. 

 The Gaussian curvature 𝑅 of the torus is given by  
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and the area element remains 𝑑𝑥𝑑𝑦. Similar to Euler 

flows on flat domains, we consider the vorticity equation 
𝜕𝑞

𝜕𝑡
+
𝜕𝜓

𝜕𝑥

𝜕𝑞

𝜕𝑦
−
𝜕𝑞

𝜕𝑥

𝜕𝜓

𝜕𝑦
= 0 

where 𝑞 is the vorticity and 𝜓 is the stream function 

determined by 
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Note that the Laplace-Beltrami operator Δ
𝑔(𝑡)

 is time-

dependent. The system conserves the Casimir invariants  
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for any function 𝑓, although the energy is not conserved. 

 For numerical calculations, we consider the case in 

which γ is independent of 𝑥. Furthermore, we 

introduce a new latitudinal coordinate 𝑌 = 𝑌(𝑦, 𝑡) 

which fulfills a differential equation  
∂𝑦

∂𝑌
= γ(𝑥, 𝑦; 𝑡), 

when 𝑦 = 𝑦(𝑌, 𝑡) is viewed as a function of the new 

coordinates 𝑌 and 𝑡. We impose a periodicity condition 

𝑦(𝑌 + 2𝜋, 𝑡) = 𝑦(𝑌, 𝑡) + 2𝜋. Then, the Euler equation 

in the coordinate system (𝑥, 𝑌, 𝑡) becomes 

𝜕𝑞̃

𝜕𝑡
−
𝑦̇

𝛾̃

𝜕𝑞̃

𝜕𝑌
+
1

𝛾̃
(
𝜕𝜓̃

𝜕𝑥

𝜕𝑞̃

𝜕𝑌
−
𝜕𝑞̃

𝜕𝑥

𝜕𝜓̃

𝜕𝑌
) = 0 

and the Laplace-Beltrami operator can be written as 
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where tilde denotes a function expressed in the new 

coordinates (𝑥, 𝑌, 𝑡), and 𝑦̇ = (∂𝑦/ ∂𝑡)(𝑌, 𝑡). The Euler 

equation in this form can be numerically integrated by 

using the spectral method.  

 In the talk, we will show some results from time 

integrations and analyze how domain geometry affects 

vorticity filamentation, mixing, and entropy production. 

Since the energy is not conserved, the flows cannot be 

directly compared to those on a flat torus or statistical 

equilibria. However, by incorporating artificial dynamics 

such as [4], the energy can be restored. Furthermore, the 

dynamics on a periodically deforming torus may be an 

interesting object for the non-equilibrium statistical 

mechanics. On a flat rectangular domain, the energy of 

the Euler flow can be extracted by periodically 

deforming the boundary of the domain, which is related 

to the negativeness of the temperature in two-

dimensional turbulence [5]. As future work, we aim to 

investigate the relationship between the curvature of the 

domain and the amount of energy extracted. 
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