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 It is well-known that 𝐸 × 𝐵 flows can suppress 
turbulent transport in fusion devices, either via 
suppression of the turbulence amplitude [1], or via 
suppression of the transport crossphase between the 
electric potential and the transported quantity, e..g. 
ion/electron temperature or density, etc ... [2]. 
Several works showed evidence of radial modulation of 
the transport crossphase in the Hasegawa-Wakatani 
model [3,4,5]. In the present work, we derive the 
nonlinear crossphase dynamics directly from the Tensor 
wave-kinetic equation (TWKE) [6] - a natural extension 
of the standard WKE for drift-waves [7]. We apply this 
analysis to the well-known Chalmers two-field ion-
temperature-gradient driven (ITG) turbulence model 
[8,9]. The trace of this equation recovers the standard 
scalar WKE in the drift-wave limit, while the off-
diagonal terms involve the transport crossphase 𝜁௞  

between ion temperature 𝑇௞ and radial velocity         

𝑣௥௞ = −𝑖𝑘ఏ𝜙௞ fluctuations (related to electric 

potential 𝜙௞) and the associated amplitude ratio 𝛽௞ =
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. Physically, the associated Wigner tensor 𝑊 is 

related to the plasma entropy 𝑆 via 𝑆 =
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ଶ
 ln det 𝑊, 

with ‘det’ the determinant of the tensor [10]. For the 
two-field Chalmers ITG model, the Wigner tensor can be 
written in the form: 
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with 𝑟௞ = 𝛽௞𝑁௞, and 𝑁௞ = [1 + 𝑘ୄ
ଶ]ଶ|𝜙௞|ଶ is the 

wave action density for ITG turbulence, i.e. potential 
enstrophy density. The off-diagonal terms in the Wigner 
tensor are responsible for driving turbulent heat transport. 
The ITG ion heat flux is expressed in the form:𝑄௜ =

∑
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Zonal flows 𝑉௓ி and zonal ion temperature 𝑇௭௢௡ are 
described via the perturbed Hamiltonian, i.e. nonlinear 
advection frequency. The latter has diagonal terms 
~𝑘ఏ𝑉௓ி and off-diagonal terms ~𝑇௭௢௡

ᇱ , where the 
prime indicates radial derivative. 
After some algebra, one can show that the radial phase-
shift between zonal flow shear and zonal temperature, i.e. 
the zonal crossphase 𝜁௤  evolves as: 
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ᇲ 𝑒௜఍೜], with 𝑞௥  

the radial wavenumber of zonal flows, 𝑉௤
ᇱ the ZF shear, 

and 𝛽௤ the zonal amplitude ratio. Here, 𝛺௤  is the 

complex-valued zonal frequency, 𝛺௤
௥௘௦ = 𝑞௥𝑐௤  

denotes the zonal resonance frequency, with 𝑐௤ =

𝑅𝑒[
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] the radial propagation speed. The zonal 

crossphase dynamics is similar to the Kuramoto equation 
[11]. Hence, phase-locking occurs and drives zonal 
temperature corrugations, provided the turbulence phase 
coherence is large enough. The ITG crossphase also 
evolves via a Kuramoto-like equation, which we call the 
phase kinetic equation. It is affected both by zonal flow 
shear and zonal temperature curvature, via shearing 
effects, but also by zonal temperature gradient which 
induces local flattening/steepening of the temperature 
profile and hence modulation of the ITG drive. Without 
zonal flows, the ITG crossphase dynamics reduces to: 
డ఍ೖ

డ௧
= −𝛥𝜔𝑁௞[tan 𝜁௞ − tan 𝜁௞଴], 

with 𝜁௞଴ the phase-locked solution. For ITG the 
relaxation rate is proportional to the turbulent 
decorrelation rate 𝛥𝜔, as opposed to the collision 
frequency for dissipative modes. When taking into 
account zonal modes, they suppress the crossphase, via 
k-space diffusion. 
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