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Abstract

In this work, we discuss nonlinearities in kinetic and 

fluid systems [1–12], with particular emphasis on 

resonance broadening, which plays a crucial role in 

nonlinear kinetic dynamics and enables fluid closures. 

Resonance broadening [1,3,5,6] enhances zonal flows, 

contributing to isotope scaling and density limits [12], 

the Dimits shift, and the emergence of particle and 

temperature pinches [9], as well as the LH transition. 

In cases of explosive instability, the resulting fluid 

equations exhibit dynamics similar to those of a 

population explosion [4]. These phenomena are made 

possible once resonance broadening causes a 

consistent fluid closure [5,6]. Due to the large 

characteristic velocities in kinetic systems, a strongly 

nonlinear treatment such as the inclusion of resonance 

broadening is essential. The effects of resonance 

broadening are therefore fundamental to plasma 

turbulence. For example, it has enabled the prediction 

of a particle pinch in the QualiKiz code [10], which 

was fitted against the nonlinear kinetic code GYRO. 

In our fluid closure [9], resonance broadening 

accounts for both temperature and particle pinches and 

is expected to have similar effects in TGLF (GLF23) 

following its calibration to GYRO simulations [11]. A 

novel aspect of our work is the demonstration of a 

mechanism that cancels linear kinetic wave particle 

resonances through resonance broadening [8]. 

Specifically, in interactions between waves with 

positive and negative wave energy [2–4], nonlinear 

frequency shifts [4] stabilize explosive instabilities by 

altering the sign of the wave energy. This, in turn, 

reverses the sign of the linear kinetic wave particle 

resonances, causing them to average out on the 

transport timescale [8]. 
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