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1. Introduction: Incompressible barotropic flows 
The dynamics of an inviscid incompressible fluid is 
described by the Hamiltonian equation for a functional of 
the velocity 𝐯𝐯 with respect to the Lie-Poisson bracket:  

dF
𝑑𝑑𝑑𝑑

= {F, H}; {F, H} ≔ 〈�𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

, 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿
� ,𝒗𝒗〉 

The Nambu-bracket [1] manifests the helicity h, a 
topological invariant, lying behind it.  
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A direct consequence of (1) is the Euler equation 
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where ℘[⋅] is the operator projecting to solenoidal 
vector field. An isovortical perturbation δ𝒗𝒗 is a vector 
field that lies on ℎ = const., and is provided by leaving 
the Hamiltonian an arbitrary functional K,  
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where 𝛏𝛏 = ∂K
δ𝒗𝒗

 is an arbitrary vector field. Arnold 
theorem [2] states that a steady state 𝒗𝒗, of vanishing 
RHS of (2),.is characterized as an extremal of the kinetic 
energy 𝐻𝐻 with respect to the isovortical ones (3).  

δH = ∫
𝛿𝛿𝛿𝛿
𝛿𝛿𝒗𝒗

⋅ 𝛿𝛿𝒗𝒗𝑑𝑑3𝑥𝑥 = �𝝃𝝃 ⋅ �
𝛿𝛿ℎ
𝛿𝛿𝒗𝒗

×
𝛿𝛿𝛿𝛿
𝛿𝛿𝒗𝒗
�𝑑𝑑3𝑥𝑥 = 0. (4) 

Knowledge of stability and bifurcation of a flow is 
gained from the spectra of the linearized Euler equation. 
According to Krein's theory of Hamiltonian spectra, the 
signature of wave energy plays a vital role for the 
stability criterion; coexistence of two modes with 
opposite signed energy or of zero-energy modes is 
necessary for triggering instability [2,3]. Owing to the 
critical property (4), the energy, of second order in 
amplitude, of an isovortical perturbation is expressible 
solely in terms of first-order perturbation 𝛏𝛏.  
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where 𝛚𝛚 = ∇ × 𝒗𝒗 is the vorticity field [2,4]. 
 
In this investigation, we extend the energy formula (5) to 
compressible non-isentropic magnetohydrodynamics 
(MHD) [5].  
 
2. Nambu bracket for compressible baroclinic MHD 
Motion of the compressible non-isentropic MHD is 
governed by the equation of continuity, the Euler 
equations augmented by the Lorentz force, the adiabatic 
condition and the induction equation for the 
density ρ(𝐱𝐱, t), the velocity field 𝒗𝒗(𝐱𝐱, t), the specific 

entropy s(𝐱𝐱, t) and the magnetic field 𝐁𝐁(𝐱𝐱, t).  
The total mass M = ∫ ρ𝑑𝑑3𝑥𝑥, the total entropy S =
∫ ρs𝑑𝑑3𝑥𝑥, the magnetic helicity h𝑚𝑚 = ∫ 𝐀𝐀 ⋅ 𝐁𝐁𝒅𝒅𝟑𝟑𝑥𝑥 with 
𝐁𝐁 = ∇ × 𝐀𝐀, and the cross helicity h𝑐𝑐 = ∫ 𝐌𝐌 ⋅ 𝐝𝐝𝑑𝑑3𝑥𝑥, 
with 𝐌𝐌 = ρ𝐯𝐯 and 𝐝𝐝 being the displacement field, 
constitute a complete set of the Casimirs. The Nambu 
bracket (1) is then extended to 

dF
𝑑𝑑𝑑𝑑

= {F, h𝑐𝑐 , H}𝑀𝑀𝑀𝑀𝑀𝑀 + {F, S, H}𝑀𝑀𝑀𝑀𝑀𝑀 + {F, h𝑚𝑚 , H}𝑀𝑀𝑀𝑀𝑀𝑀 
the first bracket of which takes, for instance, 
{F, h𝑐𝑐 , H}𝑀𝑀𝑀𝑀𝑀𝑀 = −∫ {𝛿𝛿ℎ𝑐𝑐

𝛿𝛿𝒅𝒅
⋅ [𝛿𝛿𝛿𝛿
𝛿𝛿𝑴𝑴

⋅ ∇  𝛿𝛿𝛿𝛿
𝛿𝛿𝑴𝑴

−  𝛿𝛿𝛿𝛿
𝛿𝛿𝑴𝑴

⋅ ∇  𝛿𝛿𝛿𝛿
𝛿𝛿𝑴𝑴

] +
             cyc(F, h𝑐𝑐 , H)}𝑑𝑑3𝑥𝑥      
with cyc(⋅,⋅,⋅) signifying the cyclic permutations [1]. 
 
3. Wave energy for compressible baroclinic MHD 
Perturbations preserving all the Casimir invariants are 
referred to as the isomagnetovortical perturbations in the 
context of MHD [5], and are generated by leaving the 
Hamiltonian an arbitrary functional K(𝐌𝐌, ρ, s,𝐁𝐁). By 
restricting to this class of waves, calculation of their 
energy becomes feasible, without having to necessitate 
perturbations of higher than the first order in amplitude. 
 
To perform calculation of the wave energy, it is judicious 
to start from the Frieman-Rotenberg equation, governing 
the Lagrangian displacement field 𝛏𝛏(𝐱𝐱, t).  
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where 𝐅𝐅(𝛏𝛏) is the force operator of thermodynamic as 
well as hydrodynamic origin. For our purpose, we have 
to confirm that 𝐅𝐅 is self-adjoint, which is a bit of task. 
Self-adjointness of 𝐅𝐅 guarantees that the energy of 
waves is calculated through 
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− 𝝃𝝃 ⋅ 𝑭𝑭(𝝃𝝃)�𝑑𝑑3𝑥𝑥. (6) 

Starting from (6), we manipulate the energy formula 
extending (5) to allow for the compressibility and 
baroclinic effect. The resulting formula is compared with 
other formulas. 
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