

Integrated time-dependent core-edge-SOL modelling of ITER SRO plasma scenarios

F. Koechl¹, R. Futtersack², Y. Baranov², X. Bonnin¹, C. Bourdelle³, F. Casson², M. Dubrov¹, F. Eriksson², L. Figini⁴, P. Fox², L. Garzotti², Y. Gribov¹, O. Hoenen¹, R. R. Khayrutdinov⁵, S.-H. Kim¹, P. Knight², J. Lee¹, A. Loarte¹, V. Lukash⁵, E. Militello-Asp², V. Parail², S. D. Pinches¹, R. A. Pitts¹, A. R. Polevoi¹, A. Pshenov¹, M. Schneider¹, J. Simpson², Z. Stancar², P. Strand⁶, G. Suarez Lopez^{1,2}, D. Taylor², E. Tholerus²

¹ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul lez Durance Cedex, France

²United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon, OX14 3DB, UK

³CEA, IRFM, 13108 St. Paul-lez-Durance, France

⁴Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, 20125 Milano, Italy

⁵National Research Center "Kurchatov Institute", Moscow, 123182 Russia

⁶Chalmers University of Technology, Göteborg, Sweden e-mail(speaker): Florian.Koechl@iter.org

The ITER Research Plan (IRP) has been updated to incorporate a tungsten first wall and a revised heating mix. [1,2] The planned operational sequence begins with the **Start of Research Operation (SRO)** phase, which foresees the following target scenarios:

- **Hydrogen L-mode scenario** with 40 MW of EC heating, reaching plasma currents up to $I_{\rm pl} = 15$ MA at $B_0 = 5.3$ T.
- **Deuterium H-mode scenarios** at $I_{pl} = 5$ MA / 7.5 MA, $B_0 = 2.65$ T with $P_{EC} \le 40$ MW.

In this context, integrated time-dependent core-edge-SOL simulations are required to predict plasma performance and operational constraints with tungsten as the main heavy-ion impurity.

To address this, the High Fidelity Plasma Simulator (HFPS), comprised of the DINA free boundary equilibrium evolution code and the JINTRAC integrated core (JETTO + SANCO + TGLF-SAT2) + edge / SOL-div (EDGE2D + EIRENE) transport solvers embedded in the IMAS workflow environment have been applied, with EC heat deposition and current drive being calculated by GRAY, and the MHD pedestal stability limit in H-mode being determined in a feedback loop with MISHKA.

Comprehensive scenario simulations were performed for the **limiter**, **current ramp-up**, **flat-top**, and **ramp-down** phases. These included scans of tungsten sputtering from the wall as a function of SOL transport conditions, leading to an assessment of operational space constraints. Key points include:

- Core contamination pathways: The relative efficiency of tungsten transport from the wall versus the divertor was quantified, and actuator adjustments for each phase were evaluated to minimise core tungsten accumulation.
- **Limiter phase:** Quasi-stationary operation is possible even with high tungsten self-sputtering—induced core radiation fractions (~70–80%), provided that central EC heating continuously exceeds central radiation losses. [2]
- **Diverted ramp-up:** Tungsten core concentration drops significantly once the plasma is detached from the wall after X-point formation. Tungsten sputtering from the divertor remains negligible due to modest predicted target temperatures and power densities of up to a few MW/m² with $P_{\rm EC} \leq 20$ MW and a Greenwald density fraction $n_{\rm e,lin.-avg}/n_{\rm GW} \sim 0.4$.
- Flat-top phase: While H-mode operation shows efficient tungsten screening in the pedestal, divertor heat-flux control via neon seeding may be required at lower densities $(n_{e,lin.-avg}/n_{GW} < \sim 0.5)$ with $P_{EC} \le 40$ MW.
- Ramp-down phase: Strategies for optimal H-mode termination - including heating, fuelling, and plasma shape control - were developed to enable a well-controlled shutdown with minimal tungsten contamination.